首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> A new mixed-metal sulfido incomplete cubane cluster [(MoCuS3) (O) (μ-dtp) (PPh3)3] Cdtp = S2P (OC2H5)2] has been prepared by reaction of (NH4)2MoOS3 with Cu(dtp) (PPh3)2 in dimethylformamide solution. It crystallizes in the triclinic space group P1, a = 13.810(5), b = 19. 753(5), c=11. 719(4) A. α=99. 42(2), β=107. 24(3),γ=88. 05(3)°, V = 3012(2)A3, Dc = l. 51g/cm3and Z = 2. Final R=0. 046, Rw = 0. 056 for 7700 unique intensity data(I≥3σ(I)). The central unit [MoCu3S3]3+ can be described as a distorted incomplete cube with one missing corner. The Mo atom is tetrahedrally coordinated by three μ3-S atoms and one terminal O atom. Two Cu atoms are tetrahedrally coordinated whereas the third Cu atom has a highly distorted trigonal environment. The mean Mo - Cu bond length is 2. 752A. The Cu...Cu distances are in the range of 3. 200(1) -3. 740(1) A which are too long to form bonds.  相似文献   

2.
3.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

4.
<正> INTRODUCTION. In recent years, the di-, tri- and tetranuclear mixed metal Mo-Cu-S clusters have been extensively studied with [MoS_4]~(2-) core skeleton unchanged So far in the literatures, the ligands involved in the Mo-Cu-S system are all monodentate, no multidental ligands have been found  相似文献   

5.
Bromotrinitrosyl iron was prepared by passing a stream of nitrogen monoxide over a mixture of iron dibromide and iron powder at elevated temperatures. It readily loses NO to give [(ON)2Fe(μ‐Br)Fe(CO)2]. The structure of freshly obtained [Fe(NO)3Br] was determined by X‐ray diffraction at 200 K and shows (distorted) tetrahedral coordination with N–Fe–N and N–Fe–Br angles of 107.9(2)° and 111.0(2)° and bent Fe–N–O groups (162.5(6)°). The DFT calculations in the series [Fe(NO)3X] (X = Cl, Br, I) reproduce well the experimental structural parameters and vibrational frequencies.  相似文献   

6.
Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different compositions: 1 (M = Cs; X = Cl; T = P), 2 (M = Cs; X = Cl; T = V), 3 (M = Rb; X = Cl; T = P), 4 (M = K; X = Br; T = P), 5 (M = K; X = Cl; T = P) and 6 (M = Cu; X = Cl; T = V). The crystal structures of the compounds are based upon the same structural unit, the layer consisting of a kagome lattice of Cu2+ ions and are composed from corner-sharing (OCu4) anion-centered tetrahedra. Each tetrahedron shares common corners with three neighboring tetrahedra, forming hexagonal rings, linked into the two-dimensional [O2Cu5]6+ sheets parallel to (001). The layers are interlinked by (T5+O4) tetrahedra (T5+ = V, P) attached to the bases of the oxocentered tetrahedra in a “face-to-face” manner. The resulting electroneutral 3D framework {[O2Cu5](T5+O4)2}0 possesses channels occupied by monovalent metal cations M+ and halide ions X. The halide ions are located at the centers of the hexagonal rings of the kagome nets, whereas the metal cations are in the interlayer space. There are at least four different structure types of the averievite-type compounds: the P-3m1 archetype, the 2 × 2 × 1 superstructure with the P-3 space group, the monoclinically distorted 1 × 1 × 2 superstructure with the C2/c symmetry and the low-temperature P21/c superstructure with a doubled unit cell relative to the high-temperature archetype. The formation of a particular structure type is controlled by the interplay of the chemical composition and temperature. Changing the chemical composition may lead to modification of the structure type, which opens up the possibility to tune the geometrical parameters of the kagome net of Cu2+ ions.  相似文献   

7.
新型六核双网兜状簇合物[MoS4Cu5Br3(Py)7]的合成与晶体结构   总被引:1,自引:0,他引:1  
以(NH4)2[Mo2S12]?H2O与过量CuBr在吡啶溶液中反应,得到了一个新型六核Mo/Cu/S簇合物[MoS4Cu5Br3(Py)7]。X-射线单晶结构分析表明它属于三斜晶系,空间群为P?C35H35Br3Cu5MoN7S4,Mr=1335.37,a=11.6274(4),b=12.0127(4),c=18.8872(5),a=82.46(2),b=73.25(2),g=62.800(13),V=2246.8(2)?,Z=2,F(000)=1300.0,Dc=1.974g/cm3,?=5.482mm-1,5718个独立可观察点(I>3(I)),最终偏离因子R和Rw分别为0.042和0.048。标题化合物是由2个相似的网兜状MoS3Cu3簇核通过共用MoSCuS平面形成的双网兜状结构,Mo…Cu距离在2.6830(11)~2.741(2)胖洹?  相似文献   

8.
Abstract

The Schiff base N-2,4-dihydroxybenzal-D-glucosamine (L), and its Fe(III), Co(III), Cu(II) and Zn(II) complexes have been synthesized and characterized. Magnetic moments suggest that all complexes are high-spin. The Cu(II) chelate in DMF solution has a distorted tetrahedral structure, as shown by ESR and electronic spectra. Detailed studies have been made concerning the solution equilibrium of L with transition metal ions. Stabilities of the complexes are in accord with the Irving-Williams series.  相似文献   

9.
Abstract

A solid hetero-bimetallic complex of Ba+2 and Cu+2 was prepared by slow evaporation of a 3/1 CH3CN/CH3OH mixture containing 15-crown-5 and the chloride salts of Ba+2, Cu+2, and Y+3. The resulting complex was studied using single crystal X-ray diffraction. [Ba(15-crown-5)2][CuCl4] crystallizes in the monoclinic space group Pn with cell parameters (20°C), a=12.119(2), b=9.386(2), c=13.475(3)Å, β=93.81(2)°, and D calc=1.70 g cm?3 for Z=2. Ba+2 is coordinated to all 10 oxygen atoms of two 15-crown-5 molecules in a sandwich geometry. Cu+2 is coordinated to the four chloride anions and exhibits a distorted tetrahedral geometry. The two shortest Cu…Ba separations are 6.855(2) and 6.902(2)Å.  相似文献   

10.
Mixtures of [Ph(3)PNPPh(3)](+)Cl(-) with CuBr(2) (or CuBr(2)+CuCl(2)) in ethanol/dichloromethane yield crystals containing three-coordinate copper(II) with mixed chloride and bromide ligands, namely [Ph(3)PNPPh(3)](+)[CuCl(0.9)Br(2.1)](-) (1) and [Ph(3)PNPPh(3)](+)[CuCl(2.4)Br(0.6)](-) (2). The trigonal-planar coordination of copper(II) is angularly distorted but unambiguous, as there is no other halide ligand within 6.7 A of the copper atom. Density functional theory (DFT) calculations on planar [CuClBr(2)](-) show that the energy surface for angle bending is very soft. Crystallisation in the presence of CH(3)CN yields [Ph(3)PNPPh(3)](+)[CuCl(0.7)Br(2.3)(NCCH(3))](-) (3), in which there is additional secondary coordination by NCCH(3) (Cu-N 2.44 A). DFT calculations of the potential energy surface for this secondary coordination show that it is remarkably flat (<3 kcal mol(-1) for a variation of Cu-N by 0.8 A). The crystal packing in 1, 2 and 3, which involves multiple phenyl embraces between [Ph(3)PNPPh(3)](+) ions and numerous C-H...Cl and C-H...Br motifs, is associated with intermolecular energies that are larger than the variations in intramolecular energies. For reference, the crystal structures of [Ph(3)PNPPh(3)(+)](2)[Cu(2)Cl(6)](2-) (4) and [Ph(3)PNPPh(3)(+)](2)[Cu(2)Br(6)](2-) (5) are described. We conclude 1) that three-coordinate copper(II) with monatomic halide ligands, although uncommon, can be regarded as normal, 2) that steric control by ligands is not necessary to enforce three-coordination, 3) that a hydrophobic aryl environment stabilises [Cu(Cl/Br)(3)](-), and 4) that the energy change in the transition from three- to four-coordinate copper(II) is very small (ca 5 kcal mol(-1)).  相似文献   

11.
Lang JP  Xu QF  Zhang WH  Li HX  Ren ZG  Chen JX  Zhang Y 《Inorganic chemistry》2006,45(26):10487-10496
In our working toward the rational design and synthesis of cluster-based supramolecular architectures, a set of new [WS4Cu4]- or [MoOS3Cu3]-based supramolecular assemblies have been prepared from reactions of preformed cluster compounds [Et4N]4[WS4Cu4I6] (1) and [(n-Bu)4N]2[MoOS3Cu3X3] (2, X = I; 3, X = SCN) with flexible ditopic ligands such as dipyridylsulfide (dps), dipyridyl disulfide (dpds), and their combinations with dicyanamide (dca) anion and 4,4'-bipy. The cluster precursor 1 reacted with dps or dpds and sodium dicyanamide (dca) in MeCN to produce [WS4Cu4I2(dps)3].2MeCN (4.2MeCN) and [WS4Cu4(dca)2(dpds)2].Et2O.2MeCN (5.Et2O.2MeCN), respectively. On the other hand, treatment of 2 with dpds in DMF/MeCN afforded [MoOS3Cu3I(dpds)2].0.5DMF.2(MeCN)0.5 (6.0.5DMF.2(MeCN)0.5) while reaction of 3 with sodium dicyanamide (dca) and 4,4'-bipy in DMF/MeCN gave rise to [MoOS3Cu3(dca)(4,4'-bipy)1.5].DMF.MeCN (7.DMF.MeCN). Compounds 4.2MeCN, 5.Et2O.2MeCN, 6.0.5DMF.2(MeCN)0.5, and 7.DMF.MeCN have been characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray crystallography. Compound 4 contains a 2D layer array made of the saddle-shaped [WS4Cu4] cores interlinked by three pairs of Cu-dps-Cu bridges. Compound 5 has another 2D layer structure in which the [WS4Cu4] cores are held together by four pairs of Cu-dca-Cu and Cu-dpds-Cu bridges. Compound 6 displays a 1D spiral chain structure built of the nido-like [MoOS3Cu3] cores via two pairs of Cu-dpds-Cu bridges. Compound 7 consists of a 2D staircase network in which each [MoOS3Cu3(4,4'-bipy]2 dimeric unit interconnects with four other equivalent units by a pair of 4,4'-bipy ligands and two pairs of dca anions. The [WS4Cu4] core in 4 or 5 and the [MoS3Cu3] core in 7 show a planar 4-connecting node and a seesaw-shaped 4-connecting node, respectively, which are unprecedented in cluster-based supramolecular compounds. The successful assembly of 4-7 from the three cluster precursors 1-3 through flexible ditopic ligands provides new routes to the rational design and construction of complicated cluster-based supramolecular arrays.  相似文献   

12.
[LiDME][(η^5—C5H5)3Nd(μ—H Nd(η^5—C5H5)3]...   总被引:1,自引:0,他引:1  
孙益民  沈琪 《应用化学》1991,8(1):23-27
  相似文献   

13.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

14.
Reactions of [ReX2(η 2-N2COPh-N′,O)(PPh3)2] with 3-methylbenzonitrile give two iso-structural complexes, [ReX2(N2COPh)(CH3PhCN)(PPh3)2] (X?=?Cl, Br). The crystal and molecular structures of [ReCl2(N2COPh)(CH3PhCN)(PPh3)2] (1) and [ReBr2(N2COPh)(CH3PhCN)(PPh3)2]?·?CH2Cl2 (2) were determined. The electronic structures were examined with density functional theory (DFT). The spin-allowed electronic transitions were calculated with the time-dependent DFT method, and the UV-Vis spectrum has been discussed.  相似文献   

15.
Abstract

The reaction of dipropargylether with Mo2(C5H4R)2(CO)4 (R = H, COOCH2CH3), prepared by refiuxing a toluene solution of Mo2(C5H4R)2(CO)6 (R = H, COOCH2CH3), gave dinuclear cluster complexes (HC2CH2OCH2C2H-μ)[Mo2(C5H4R)2(CO)4] [(1): R = H, (2): R = COOCH2-CH3] and tetranuclear cluster complexes [Mo2(C5H4R)2(CO)4](μ-HC2CH2OCH2C2H-μ) [Mo2(C5H4R)2(CO)4] [(3): R = H, (4): R = COOCH2CH3], respectively. When (1) or (2) was treated with an equimolar amount of octacarbonyldicobalt, the new novel tetranuclear cluster complexes [Co2CO)6](μ-HC2CH2OCH2C2H-μ)(Mo2(C5H4R)2(CO)4] [(5): R = H, (6): R = COOCH2CH3] were obtained. These complexes were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structure of complex (3 1/2CH2C12) was determined by single-crystal X-ray diffraction methods.  相似文献   

16.
Trigonal Planar CuX3-Groups in Cu2Mo6X14, X = Cl, Br, I Cu2Mo6Cl14 (I), Cu2Mo6Br14 (II) and Cu2Mo6I14 (III) were synthesized by thermal treatment of corresponding mixtures of copper(I) and molybdenum(II) halides. The crystal structures were determined by single crystal X-ray analyses. I and II show isotypism, cubic, Pn3 (no. 201, sec. setting), Z = 4, I: a = 12.772(3) Å, II: a = 13.350(2) Å. III shows a new structural type, orthorhombic, Pbca (No. 61), Z = 4, a = 16.058(3) Å, b = 10.643(2) Å, c = 16.963(3) Å. Trigonal planar CuX3 units were found in I? III. Structural behaviour relations are discussed, especially with regard to ionic conductivity.  相似文献   

17.
以8-氨基喹啉为母体合成了5-[(3-磺羧基苯基)偶氮]-8-氨基喹啉(m-SPAQ)。在阳离子表面活性剂CT-MAB存在下,于pH8.3的缓冲溶液中,试剂与铜形成红色配合物,其最大吸收波长位于596mm,摩尔吸光系数为6.24×10~4L·mol~(-1)·cm~(-1),铜的量在0~20ug/25mL范围内符合比尔定律,此法用于铝合金中微量铜的测定,结果满意。  相似文献   

18.
Open sheet and framework structures [CuX{cyclo-(MeAsO)4}] (X=Cl, Br, I) 1 – 3 and [Cu3X3{cyclo-(MeAsO)4}2] (X=Cl, Br) 4 and 5 may be prepared by self-assembly from CuX and methylcycloarsoxane (MeAsO)n in acetonitrile solution. 1 – 3 exhibit 44 nets in which (CuX)2 units are connected through μ-1 KAs1 : 2 KAs3 coordinated (MeAsO)4 ligands into large 28-membered rings. In contrast, adjacent [CuX] chains in 4 and 5 are connected into sheets by μ4-K4 As coordinated (MeAsO)4 building blocks, with μ-1 KAs1 : 2 KAs3 bridging of these layers by independent (MeAsO)4 cyclotetramers leading to the generation of a porous framework structure. 1 – 5 were characterised by X-ray structural analysis.  相似文献   

19.
IntroductionInthelasttwodecadesintensivestudieshavebeencarriedoutonthemolybdenum (tungsten)chalcogenideclusters ,resultinginthediscoveryofseriesofmonomer ic ,polynuclearMo(W ) andMo(W ) heterometallicco mplexes .Triangular ,cubane ,octahedralaswellashex nuclear…  相似文献   

20.
对于羰基混合金属簇的合成,利用配体的交换反应,制备含有不同配体的羰基混合金属簇。配体取代后的羰基金属簇的性质发生了变化,如可逆氧化还原性质,催化活性与选择性等。由于过渡金属原子的性质各不相同,配位取代反应也有很大差异,所以研究配体取代反应,制备含有不同配体的羰基过渡金属簇成为金属簇化学的重要组成部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号