首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the hexacyanometalates K3[M(1)(CN)6] (M(1) = Cr(III), Fe(III), Co(III)) with the bispidine complexes [M(2)(L(1))(X)](n+) and [M(2)(L(2))(X)](n+) (M(2) = Mn(II), Ni(II), Cu(II); L(1) = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; L(2) = 3-methyl-9-oxo-7-(2-pyridylmethyl)-2,4-di-(2-quinolyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; X = anion or solvent) in water-methanol mixtures affords trinuclear complexes with cis- or trans-arrangement of the bispidine-capped divalent metal centers around the hexacyanometalate. X-ray structural analyses of five members of this family of complexes (cis-Fe[CuL(2)]2, trans-Fe[CuL(1)]2, cis-Co[CuL(2)]2, trans-Cr[MnL(1)]2, trans-Fe[MnL(1)]2) and the magnetic data of the entire series are reported. The magnetic data of the cyanide bridged, ferromagnetically coupled cis- and trans-Fe[ML]2 compounds (M = Ni(II), Cu(II)) with S = 3/2 (Cu(II)) and S = 5/2 (Ni(II)) ground states are analyzed with an extended Heisenberg Hamiltonian which accounts for anisotropy and zero-field splitting, and the data of the Cu(II) systems, for which structures are available, are thoroughly analyzed in terms of an orbital-dependent Heisenberg Hamiltonian, in which both spin-orbit coupling and low-symmetry ligand fields are taken into account. It is shown that the absence of single-molecule magnetic behavior in all spin clusters reported here is due to a large angular distortion of the [Fe(CN)6](3-) center and the concomitant quenching of orbital angular momentum of the Fe(III) ((2)T2g) ground state.  相似文献   

2.
Thermodynamics of complexation reactions between Zn(II), Ni(II), Hg(II), Co(II), and Cu(II) acetates and 3,35,5-tetramethyl-4,4-dibutyldipyrrolylmethene in DMF at 298.15 K is studied by calorimetric and spectrophotometric methods. The replacement of Zn2+, Ni2+, and Hg2+ ions by Co2+ and Cu2+ ions was found to increase the equilibrium constants of reactions of complex formation with dipyrrolylmethene by more than two orders of magnitude. The role of solvation interactions in coordination of dipyrrolylmethene by d-metal ions is established.  相似文献   

3.
A new potential tetradentate ligand, N-nicotinoyl-N-2-furanthiocarbohydrazide (H2Nfth), and its complexes with VOIV, MnII, FeII,III, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis, i.r., n.m.r., ES+ and FAB mass spectral data. The room temperature e.s.r spectra of the VOIV and FeIII complexes yield g values, characteristic of octahedral complexes. The Mössbauer spectra of [Fe(HNfth)2] and [Fe2(Nfth)3] at room temperature and at 78 K suggest the presence of high-spin iron(II) and iron(III), respectively. The complexes are electrically insulating at room temperature, however, their conductivities increase as the temperature increases from 333–383 K, with a band gap of 0.46–0.77 eV, indicating their semiconducting behaviour. H2Nfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

4.
Complexes of Co(II), Ni(II), Cu(II), and Zn(II) with N,N′-(aldose)2–thiocarbohydrazide (LH2) were synthesized, isolated as solid products and characterized by analytical means as well as by spectral techniques, FTIR, 1H NMR, EPR, UV spectroscopy, and CD. All the metal ions formed M[LH]X complexes. Molar conductance values in DMF indicate non-electrolytic complexes. In DMSO with tetramethylammonium chloride supporting electrolyte, the copper complex displays irreversible cyclic voltammetric responses with E p near ?0.621 and 0.461 V versus Ag/AgCl at scan rate of 0.1 V s?1. Probable structures for the complexes are proposed.  相似文献   

5.
Abstract

The coordination in aqueous solution of 4-chloro-1,2-phenylenediamine-N',N',N',N'-tetraacetic acid (4-Cl-o-PDTA) with Be(II) and with the transition metal cations cobalt(II), nickel(II) and copper(II) was reported in earlier publications.1,2 In this note a study is presented of the coordination in aqueous solution (25°C, 1 = 0.1 M in KC1) of 4-CI-o-PDTA acid with magnesium(II), calcium(II), strontium(II), barium(II), zinc(II) and cadmium(II).  相似文献   

6.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

7.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of steric hindered Schiff-base ligand [N,N′-(3,4-benzophenon)-3,5-But2-salicylaldimine (LH2)] and its mononuclear Cu(II), Co(II), Ni(II), Mn(II) and Fe(II) complexes are described in this work. The new dissymmetric steric hindered Schiff-base ligand containing a donor set of NONO was prepared through reaction of 3,4-diaminobenzophenon with 3,5-But2-salicylaldehyde. Certain metal complexes of this ligand were synthesized by treating an ethanolic solution of the ligand with an equimolar amount of metal salts. The ligand and its complexes were characterized by FT-IR, UV–vis, 1H NMR, elemental analysis, molar conductivity and thermal analysis methods in addition to magnetic susceptibility, electrochemistry and spectroelectrochemistry techniques. The tetradentate and mononuclear metal complexes were obtained by reacting N,N′-(3,4-benzophenon)-3,5-But2-salicylaldimine (LH2) with some metal acetate in a 1:1 mole ratio. The molar conductance data suggest metal complexes to be non-electrolytes.  相似文献   

8.
A new ligand, N-phenyl-N -2-furanthiocarbohydrazide (HPhfth), and its complexes with VOIV, MnIII, FeIII, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, i.r., n.m.r., u.v.–vis., mass and FAB mass spectral data. The room temperature e.s.r. spectra of the VOIV, FeIII and CuII complexes yield <g> values characteristic of square pyramidal VOIV, octahedral FeIII and square planar CuII, respectively. The NiII and CuII complexes semiconduct, but the ZnII complex is an insulator at room temperature. However, the conductivity increases as the temperature increases from 303–383 K, with a band gap of 0.21–1.01 eV. HPhfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

9.
Dichloro(N,N-diethyl-ethane-1,2-diamine)copper(II) has copper(II) ions in square pyramidal coordination. The two nitrogen atoms of the diamine {Cu–Nprimary?=?1.979(3), Cu–Ntertiary?=?2.108(2)?Å} and two chloride ions are in the basal plane {Cu–Cl1?=?2.2680(9), Cu–Cl2?=?2.2989(8)?Å}. A centrosymmetrical dimer di-μ-chloro-bis{chloro(N,N-diethylethane-1,2-diamine-κ2)copper(II)}, C6H16Cl2CuN2, is formed by axial coordination by Cl2, trans to the tertiary nitrogen, to a second copper(II) ion, with Cu?···?Cui?=?3.4855(9) and Cl2–Cui?=?2.7860(8)?Å. The dimer is also linked by H-bond N1–H?···?Cl1i.  相似文献   

10.
Divalent metal complexes of N,N′-bis(4-imidazolymethyl)etylenediamine (EMI) have been studied using potentiometric and spectroscopic techniques (UV-Vis and NMR methods) in aqueous 0.1 mol⋅L−1 KCl supporting electrolyte at 25 °C. Final models and overall stability constants for the complexes of Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) have been established by potentiometry for all M(II)–EMI systems, except for Co(II)–EMI. The data revealed that EMI forms ML complexes with all M(II)–EMI systems, which is the dominant species over a wide range of pH except for the Ca(II)–EMI and Mg(II)–EMI systems. Formation of the MnHL complex was also found for Mn(II)–EMI solutions. In addition, the UV-Vis and 1H NMR results allowed us establish the coordination modes for the metal complexes between EMI with Cd(II), Cu(II), Ni(II) and Zn(II).  相似文献   

11.
A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S = 2 noninteracting spins (11.75 cm(3) K mol(-1)), and for 1(4+) with three S = 5/2 noninteracting spins (13.125 cm(3) K mol(-1)) suggesting that the {Mn(II)(2)Mn(III)(μ(3)-O)}(5+) and {Mn(II)Mn(III)(2)(μ(3)-O)}(6+) cores behave at low temperature like S = 2 and S = 5/2 spin centers, respectively. The thermal behavior below 40 K highlights the presence of intracomplex magnetic interactions between the two apical spins and the central core, which is antiferromagnetic for 1(3+) leading to an S(T) = 3 and ferromagnetic for 1(4+) giving thus an S(T) = 15/2 ground state.  相似文献   

12.
13.
Three new coordination polymers of copper(II), zinc(II) and cadmium(II), Cu(H2O)(Dpds)(2-MGA) (I), [Zn(Dpds)(2-MGA)] · 1.25H2O (II) and [Cd(H2O)(Dpds)(2-MGA)] · 0.25H2O (III) (Dpds = 4,4′-dipyridyldisulfide, H2MGA = (RS)-2-methyl glutaric acid), have been synthesized and characteried by X-ray single crystal structure determination. The Cu atoms in I are alternately bridged by Dpds ligands and 2-methylglutarato ligands to generate 1D chain. The resulted chains are assembled via S...S weak interactions into 2D layers, which are through twofold 2D parallel/2D parallel mode inclined interpenetration to induce 3D supramolecular architecture. In II, the ZnN2O2 tetrahedras are bridged by 2-MGA anion and Dpds ligands to form 2D (4,4) networks, which are assembled via hydrogen bonds to 3D supramolecular architecture. The centrosymmetric binuclear units Cd2(2-MGA)2 in III are bridged by Dpds ligands to form 1D repeated rhomboids chains, which are interlinked via S...S weak interactions into 2D layer, and the resulting 2D sheets are inclined parallel into 3D network.  相似文献   

14.
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the type Na4[ML(H2O)2] of the ligand, 3,3′-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresol sulphonphthalein (Xylenol Orange, Na4H2L), have been synthesized and characterized by different physico-chemical (elemental analyses, solubility, electrolytic conductances, magnetic susceptibility measurements) and spectral (u.v.-vis, i.r., e.s.r., and powder X-ray diffraction) techniques for their structure determination. The data suggest 1?:?1 (M?:?L) compositions and octahedral geometries around M(II) except for Cu(II). Antifungal activity of the complexes measured against ten fungi show significant activity against Alternaria brassicicola, Alternaria solanai, Cercospora species and Helminthosporium oryzae and moderate antifungal activity against Curvularia species, Curvularia lunata, Curvularia penniseti, Colletotrichum capsici, Aspergillus niger, Aspergillus flavus Erysiphae pisi and Fusarium udum fungi.  相似文献   

15.
The reactions of complex formation of Cu(II), Co(II), Zn(II), Ni(II), and Cd(II) acetates with 3,3′,4,4′5,5′-hexamethyl-2,2′-dipyrrolylmethene (HL) in DMF were studied by the electronic spectroscopy and calorimetric titration methods at 298.15 K. The main products of the above reactions are [ML2] chelates. In the case of Cu and Ni salts, the process occurs through the spectrally recorded stage of formation of the heteroligand [ML(AcO)] complexes. The reaction with Cd acetate terminates at the stage of the heteroligand complex formation due to the large radius and decreasing electron affinity of the Cd2+ ion. The effect of the metal nature appears in the increasing thermodynamic stability of single-type complexes in the series [ML2]: Ni(II) < Zn(II) < Co(II) < Cu(II) and [ML(AcO)]: Cd(II) < Ni(II) < Cu(II).  相似文献   

16.
Summary The reactions of manganese(II), cobalt(II) and nickel(II) acetates (1 mole) with antipyrine-4-azo--ethylcyanoacetate (HL1) and antipyrine-4-azo--acetylacetone (HL2) (1 mole) produce complexes of the M(L)2 type. K2PdCl4 (1 mole) reacts with HL1 and HL2 (1 mole) to yield complexes of the general formula PdLCl, the ligands behaving as monobasic tridentates. The electronic spectral and magnetic data show the complexes to be high-spin octahedral, whereas the palladium(II) complexes are diamagnetic square planar. The complexes were characterized by elemental analyses, conductance measurements and i.r. and electronic spectra as well as magnetic susceptibility measurements and thermal (t.g.a. and d.t.a.) analysis.Nuclear Material Authority.  相似文献   

17.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

18.
The synthesis of a series of dinuclear gold hydroxide complexes has been achieved. These complexes of type [{Au(IPr)}2(μ‐OH)]X (X=BF4, NTf2, OTf, FABA, SbF6; IPr=2,6‐bis(disopropylphenyl)imidazol‐2‐ylidene; NTf2=bis(trifluoromethanesulfonyl)imidate; OTf=trifluoromethanesulfonate; FABA=tetrakis(pentafluorophenyl)borate) are easily formed in the presence of water and prove highly efficient in the catalytic hydration of nitriles. Their facile formation in aqueous media suggests they are of relevance in gold‐catalyzed reactions involving water. Additionally, a series of [Au(IPr)(NCR)][BF4] (R=alkyl, aryl) complexes was synthesized as they possibly occur as intermediates in the catalytic reaction mechanism. 1H and 13C NMR data as well as key bond lengths obtained by X‐ray diffraction studies are compared and reveal an interesting structure–activity relationship. The collected data indicate a negligible effect of the nature of the nitrile on the reactivity of [Au(L)(NCR)][X] complexes in catalysis.  相似文献   

19.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

20.
A project related to the crystal engineering of hydrogen-bonded coordination complexes has been initiatied and some of our first results are presented here. The compounds [Mn(DMU)6](ClO4)2 (1), [Ni(DMU)6](ClO4)2 (2), [Cu(OClO3)2(DMU)4] (3) and [Zn(DMU)6](ClO4)2 (4) have all been prepared from the reaction of N,N-dimethylurea (DMU) and the appropriate hydrated metal perchlorate salt. Crystal structure determinations of the four compounds demonstrate the existence of [M(DMU)6]2+ cations and ClO4 counterions in (1), (2) and (4), whereas in (3) monodentate coordination of the perchlorate groups leads to molecules. The [M(DMU)6]2+ cations and ClO4 anions self-assemble to form a hydrogen-bonded one-dimensional (1D) architecture in (1) and different 2D hydrogen-bonded networks in (2) and (4). The hydrogen bonding functionalities on the molecules of (3) create a 2D structure. The complexes were also characterised by room-temperature effective magnetic moments and i.r. studies. The data are discussed in terms of the nature of bonding and the known structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号