首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexes [M(HIm)4(H2O)2](sac)2 (M=Co, Ni) and [Cd(HIm)2(sac)2]2 with saccharin (sac) and imidazole (HIm) were synthesized and their thermal (TG, DTG and DTA) behaviour in the interval from room temperature up to 1000°C in a static air atmosphere was investigated. Irrespectively of whether the deprotonated saccharinato residues are present as ligands or ions or both as ligands and ions, the anhydrous complexes regularly decompose in two stages. The thermal data of 16 saccharinato complexes (including the title compounds) were correlated with the respective structural data. The general thermal stability order of the saccharinato complexes can be represented as: Pb(II)<Zn(II)<Co(II)Ni(II)<Cd(II) (the stability of the Cu saccharinates depends on the particular compound) and is dictated by several structural factors, e.g. metal ionic radii, participation of the water in the coordination sphere of the metal and other structural characteristics. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
For a comparison of structural data and thermal behaviour of Zn(II) and Cd(II) complexes with biologically important ligand, 2-hydroxymethylbenzimidazole (L) the complex of the formula [ZnL3](NO3)2L0.67L′0.33 was prepared and characterized by elemental analysis, infrared (IR) spectra, single-crystal X-ray diffraction and thermal analysis (where L′ = 2-carbaldehydebenzimidazole). IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2-hydroxymethylbenzimidazole to Zn(II) ion (through the nitrogen atom of heteroaromatic ring and oxygen atom of hydroxymethyl group). The zinc ion is hexacoordinated and the shape of polyhedron can be described as pseudo-octahedron (N3O3 chromophore type). The decomposition process of studied Zn(II) and Cd(II) benzimidazole complexes in the air atmosphere proceeds in three or four main stages and traces structures of complexes. On the basis of the first DTGmax of the decompositions the thermal stability of the complexes follows the order: [CdL3](NO3)2LEtOH0.25 < [CdL2(NO3)2] < [ZnL3](NO3)2L0.67L′0.33. As the final solid products of thermal decomposition suitable metal oxides are formed.  相似文献   

3.
Abstract

Five complexes [M(NCS)2(bc)2] M?=?Mn (1), Co (2), Ni (3), Zn (4), and [Cd(NCS)2(bc)]n (5), (bc) = benzyl carbazate (benzyl hydrazinecarboxylate), have been synthesized and characterized by physico-chemical and spectroscopic methods. The crystal structures of all five complexes have been confirmed by X-ray structural analysis. These results confirm that 14 are isotypes, and all four are centrosymmetric, with two mutually trans N,O chelating (bc) ligands in equatorial positions and a pair of trans-thiocyanate anions in the axial positions. The cadmium complex (5) is a coordination polymer. The asymmetric unit contains a square planar CdN2OS core, in which the (bc) ligand adopts an N, O bidentate coordination mode together with N and S bound thiocyanato anions. Polymer expansion increases the coordination number to six with the N and S bound thiocyanate ligands linking two adjacent complexes. This expansion results in double layers of cadmium octahedra propagating along the c axis direction. The thermal analyses of these compounds show endothermic decomposition processes to give respective metal thiocyanates as intermediates. For the Mn, Co, Ni, and Zn compounds these intermediates decompose exothermically to form metal oxides, whereas the Cd complex forms cadmium sulfide as the end product.  相似文献   

4.
Three multinuclear complexes, [Co(L)(OAc)Co(CH3CH2OH)2]·H2O, [Zn(L)(OAc)Zn(CH3OH)], and [{Cd(L)(OAc)Cd(CH3OH)}2], containing a single-armed salamo-type bisoxime H3L have been synthesized and characterized structurally. The Co(II) complex forms a dimeric unit by intermolecular hydrogen bond interactions of neighboring dimeric molecules. The Zn(II) complex also forms a dimeric unit by intermolecular hydrogen bond interactions. Interesting features of the crystal structure include O?O short contacts. Meanwhile, self-assembling infinite 1-D, 2-D, and 3-D supramolecular structures are formed by intermolecular hydrogen bond and C–H?π interactions. The Cd(II) complex forms an infinite 2-D supramolecular structure by intermolecular hydrogen bond interactions. The photophysical properties of the Co(II), Zn(II), and Cd(II) complexes have also been discussed.  相似文献   

5.
Six 5-coordinate 2,6-bis(imino)pyridine metal complexes, [2,6-(ArN=CMe)2C5H3NMCl2 · nCH3CN] (Ar = 4-MeC6H4, M = Zn, n = 0.5, Zn1, M = Cd, n = 1, Cd1; Ar = 2,6-Et2C6H3, M = Zn, n = 0.5, Zn2, M = Cd, n = 0.5, Cd2; Ar = 2,4,6-Me3C6H2, M = Zn, n = 1, Zn3, M = Cd, n = 1, Cd3), were synthesized in acetonitrile by the reactions of the corresponding bis(imino)pyridines with ZnCl2 or CdCl2 · 2.5H2O, respectively. The structures of Zn1Zn3 and Cd1Cd3 were determined by the single-crystal X-ray diffraction. In all complexes, the ligand is tridentate with further coordination by two chlorides, resulting in a distorted trigonal bipyramid. All complexes self-assemble through hydrogen bonding interactions to form a 3-D supramolecular structure. At 298 K in dichloromethane, all complexes have blue luminescent emissions at 405–465 nm, which can be attributed to ligand-centered π* → π transitions. The zinc and cadmium centers play a key role in enhancing fluorescent emission of the ligands.  相似文献   

6.
The isothiocyanato Zn(II) complex (1) and mixed isothiocyanato/thiocyanato Cd(II) complex (2) with the condensation product of 2-acetylpyridine and trimethylammoniumacetohydrazide chloride (Girard’s T reagent) (HLCl) were investigated both experimentally and theoretically. The crystal structures of both complexes showed tridentate N2O coordination of hydrazine ligand. In complex 1 square-pyramidal coordination surrounding of Zn(II) consists of deprotonated hydrazone ligand and two isothiocyanato ligands, while in octahedral Cd(II) complex ligand is coordinated without deprotonation as a positively charged species and coordination geometry is completed with two N-coordinated and one S-coordinated NCS? anions. NMR spectroscopy and molar conductivity results for Cd(II) and Zn(II) complexes indicated their instability in solution. DFT calculations were performed to explain coordination preference and stability of complexes 1 and 2 in solid state and in solution. The obtained Cd(II) complex is the first reported mononuclear pseudohalide/halide Cd(II) complex with quinoline-/pyridine-based hydrazone ligands possessing octahedral geometry in solid state. In this complex, H-bonding has significant impact on coordination number and supramolecular assembly in solid state.  相似文献   

7.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

8.
New complexes of Cd(II), Zn(II) and Ni(II) with 2-quinolinecarboxaldehyde selenosemicarbazone (Hqasesc) were synthesized and structurally characterized. The structure of the ligand, Cd(II) and Zn(II) complexes was determined by NMR and IR spectroscopy, elemental microanalysis and molar conductivity measurements. Both complexes occur in solution in two forms, the major tetrahedral and minor octahedral. In the major Cd(II) complex one qasesc ligand is coordinated as a tridentate, the fourth coordination site being occupied by acetate, while in the major Zn(II) complex two qasesc ligands are coordinated as bidentates. In both minor complexes two qasesc ligands are coordinated as tridentates forming the octahedral geometry around the central metal ion. The only paramagnetic complex in the series is Ni(II) complex for which X-ray structure analysis was performed. The complex has the angularly distorted octahedral geometry with two qasesc ligands coordinated as tridentates, in a similar way as in the minor complexes of Cd(II) and Zn(II).  相似文献   

9.
The current article describes the TG and DT analyses of divalent Zn, Cd, and Hg dithiocarbamato (dtc) complexes and their adducts (dchdtc = N,N-dicyclohexyldithiocarbamate anion, 4-mpzdtc = 4-methylpiperazinecarbodithioato anion, padtc = N,N′-(iminodiethylene)bisphthalimidedithiocarbamate anion, pipdtc = piperidinecarbodithioate anion, 1,10-phen = 1,10-phenanthroline, and 2,2′-bipy = 2,2′-bipyridine) along with the structural reinvestigation of [Hg(tetds)I 2 ], where tetds = tetraethylthiuramdisulfide. In the case of Zn(II) and Cd(II) dithiocarbamates and their nitrogenous adducts, thermal decomposition of the nitrogenous bases is followed by the decay of dithiocarbamate leading to the formation of ZnS or CdS as residue. The interaction of iodine with [Hg(dedtc) 2 ] in CHCl 3 results in the oxidation of diethyldithiocarbamate leading to the formation of [Hg(tetds)I 2 ], and the structure was redetermined because the earlier determination was by a Polaroid crystallographic technique with a higher R value. The S-Hg-I bond angles [105.09(3); 105.59(3); 109.26(3), and 100.99(3)°] indicate the near tetrahedral environment around the metal ion. 1 H and 13 C NMR spectra of the complex were analyzed. Whether the product formed upon oxidation is a disulfide or an iodo-substituted product, in the present investigation, is clearly decided by the bulkiness of the substituent attached to the nitrogen. Interestingly, the steric influence is a deciding factor only in the case of mercury compounds and the dithiocarbamates involving Zn, Cd forms of the disulfide complexes.  相似文献   

10.
Isothiocyanate complexes of Zn(II) and Cd(II) with the condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized, characterized, and their antimicrobial activities were evaluated. The structures of the complexes were determined by elemental analysis, IR, and NMR spectroscopy. The crystal structure of the Zn(II) complex was also determined. Quantum-chemical calculations of the geometry and total energy of isomers of 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone) were performed in vacuum and methanol solution, with the aim to explain conformational behavior and E/Z isomerism of this compound. DFT calculations of the molecular structures and the relative stabilities of linkage isomers of the Cd(II) complex showed that the isomer with N–Cd–N coordination of SCN? is the most stable. Complexes of Zn(II) and Cd(II) exhibited low to moderate activity against the tested microbial strains.  相似文献   

11.
Two d10 metal complexes, {[Zn(Hbtc)(bmt)]·DMF·5H2O} n (1) and {[Cd(Hbtc)(bmt)]·0.5DMF·0.5H2O} n (2) (H3btc?=?1,3,5-benzenetricarboxylic acid, bmt?=?2-((benzoimidazol-yl)methyl)-1H-1,2,4-triazole), have been synthesized under solvothermal conditions by employing bmt and H3btc. Single-crystal X-ray diffraction shows that Zn(II) ions are connected by bmt with bidentate-bridging coordination and by 1,3,5-benzenetricarboxylate with bis-monodentate coordination leading to the 2D structure of 1. Complex 2 exhibits a 2D layer structure, in which bmt coordinate tridentate-bridging to Cd(II) and 1,3,5-benzenetricarboxylates coordinate to Cd(II) unidentate/chelating. Photoluminescence and thermogravimetric analyses of the two complexes are investigated.  相似文献   

12.
The first salt‐like compounds of dications with [AuCl4] anions are reported. The compounds Zn[AuCl4]2 · (AuCl3)1.115 ( 1 ) and Cd[AuCl4]2 ( 2 ) are obtained from reactions of MCl2 (M = Zn, Cd) and elemental gold in liquid chlorine at ambient temperature under autogenous pressure and subsequent annealing at 230 °C. The structure of 1 represents an incommensurately modulated composite [superspace group C2/c(α0γ)0s] built of two subsystems. The first subsystem contains chains of zinc(II) tetrachloridoaurate(III), which feature a slightly distorted octahedral coordination of Zn and can be described by the Niggli formula 1{Zn[AuCl4]1/1[AuCl4]2/2}. The second subsystem consists of Au2Cl6 molecules, which are located in channels built up by the first subsystem. The structural parameters of the hosted Au2Cl6 molecules show only small deviations from neat AuCl3. The crystal structure of Cd[AuCl4]2 ( 2 ) consists of chains built of Cd2+ ions coordinated by bridging [AuCl4] anions and alternating Cd‐Au sequence. Cd has a distorted octahedral coordination environment.  相似文献   

13.

The novel transition metal saccharinato complexes of N-(2-hydroxyethyl)-ethylendiamine (HydEt-en) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Coordination behaviour of HydEt-en has been studied. The Mn(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes, while the Fe(II) and Co(II) complexes are dimeric. The crystal structures of the [Cu(sac)2(HydEt-en)2] and [Cd(sac)2(HydEt-en)2] complexes, where sac is the deprotonated form of saccharin, were determined by x-ray diffraction. The metal ions are octahedrally coordinated by these ligands. The amine ligand acts as a bidentate N-donor ligand and its ethanol group is not involved in coordination. The sac ions coordinate through the deprotonated N as a monodentate ligand. The NH and OH groups of the amine ligand are involved in intra- and intermolecular hydrogen bonding with the carbonyl and sulphonyl oxygens of the sac ions to form a three-dimensional infinite network.  相似文献   

14.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

15.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

16.
Two d10 M(II) (M = Cd and Zn) coordination polymers (CPs) with chemical formulas, {[Cd(L1)(NCS)2(H2O)]⋅C2H5OH}n (1) , and {[Zn(L1)(NCS)2]⋅C2H5OH⋅0.5H2O}n (2) (L1 = 1,3,5-tris(4-pyridylsulfanylmethyl)-2,4,6-trimethylbenzene) were synthesized and structurally characterized by single-crystal x-ray diffraction method. In compound 1 , the coordination environment of Cd(II) ion is distorted octahedral bonded to three nitrogen donors from three L1 ligands located in a facial-position, two nitrogen donors from NCS and one water molecule. The L1 acts as a bridge ligand with tris-monodentate coordination mode in a cis-cis-cis structural conformation, connecting the Cd(II) to form a two-dimensional (2D) zigzag-like layered metal-organic frameworks. Adjacent 2D layers are then arranged orderly in an ABAB manner to complete its three-dimensional (3D) supramolecular architecture. In compound 2 , the coordination environment of Zn(II) ion is distorted tetrahedral bonded to two nitrogen donors from two L1 ligands and two nitrogen donors from two NCS ligands. The L1 acts as a bridge ligand with bis-monodentate coordination mode in a cis-cis-cis structural conformation, connecting the Zn(II) ions to form a one-dimensional (1D) zigzag-like polymeric chain. Adjacent chains are arranged orderly in an alternate ABAB manner to generate a 2D framework and then further arranged in an AAA manner to complete its 3D supramolecular architecture. The structural characterization as well as thermal-stability and solvents de-/ad-sorption behavior of 1 and 2 are studied and discussed in details.  相似文献   

17.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   

18.
New Symmetric bidentate Schiff-base ligands N,N′-bis(2,3,4-trimethoxybenzylidene)-1,2-di-aminoethane, (234-MeO-Ba)2En, and its corresponding zinc(II) and mercury(II) complexes, Zn((234-MeO-Ba)2En)I2 (I), Hg((234-MeO-Ba)2En)Cl2 (II) have been synthesized and characterized by elemental analyses (CHN), FT-IR and 1H NMR spectroscopy. The thermal behaviors of complexes were study using thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The crystal structure of I was determined from single-crystal X-ray diffraction. The coordination polyhedron about the zinc(II) center in complex I is best described as a distorted tetrahedron.  相似文献   

19.
Four Co(III), Zn(II), Pd(II) and Cd(II) complexes with ligands derived in situ from acetylpyridine and ethyl hydrazinoacetate or hydrolysed ethyl hydrazinoacetate were prepared. An X-ray structural analysis showed that the Co(III) complex is octahedral with two tridentate (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate (apha) ligands, each forming two five-membered rings with the metal ion. In the tetrahedral Zn(II) complex, only a single apha ligand was coordinated, in the same way as that in the Co(III) complex. In the case of the tetrahedral Cd(II) complex the non-hydrolysed form of (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetic acid ethyl ester (aphaoet) coordinated as a bidentate and the two remaining coordination sites were occupied by Cl? and CH3COO? ions. In addition, the square-planar neutral Pd(II) complex was synthesized, having the same bidentate as in the Cd(II) complex and two Cl? ions in the remaining coordination sites. Due to their being diamagnetic, all four complexes were characterized by 1H-NMR and 13C-NMR spectroscopy.  相似文献   

20.
以2,2′-二氨基二苯醚和4-吡啶异氰酸酯反应合成了含吡啶二脲配体(L),并分别与HgCl_2和Cd(ClO_4)2进行了配位反应,得到2个配位聚合物{[Hg(L)Cl_2]·2DMF}_n(1)和{[Cd(L)_2(H_2O)_2](ClO_4)_2·4DMF·2H_2O·2CH_3OH}_n(2),采用1H NMR、MS、FTIR和元素分析等对化合物L进行了表征。通过X射线单晶衍射技术测定了配体及2个配合物的单晶结构,结构解析表明,2个配合物均为一维链状结构。进一步考察了2个配合物的热稳定性及其对甲醇蒸气的吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号