首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two tetranuclear nickel(II) complexes, [Ni4 (p-BrPhHIDC)4(py)4(H2O)4]·CH3OH (p-BrPhH3IDC = 2-(p-bromophenyl)-1H-imidazole-4,5-dicarboxylic acid) (1) and [Ni4(p-ClPhHIDC)4 (CH3CN)4(H2O)4]·4H2O (p-ClPhH3IDC = 2-(p-chlorophenyl)-1H-imidazole-4,5-dicarboxylic acid, py = pyridine) (2), have been solvothermally synthesised and structurally characterised. Both compounds consist of similar tetranuclear Ni(II) cores, in which the imidazole dicarboxylate ligands adopt the similar coordination mode. The thermal properties of 1 and 2 have been investigated. Also, it is discovered that there exists antiferromagnetic coupling between the Ni(II) ions in 1 and 2; the best fittings to the experimental magnetic susceptibilities gave J = ? 9.89 cm? 1 and g = 2.18 for 1, and J = ? 10.54 cm? 1 and g = 2.14 for 2.  相似文献   

2.
The mononuclear complex [Ni(HOphen)(OSO3)(H2O)3] · 5H2O (HOphen = 1, 10‐phenanthrolin‐2‐ol) was prepared and its single structure was determined by X‐ray crystallography. In this complex, the NiII ion has a distorted octahedral arrangement. Crystal structure analysis shows that two kinds of π–π stacking interactions and C–H ··· O short contact intermolecular interactions exist among the adjacent complexes. Fitting to the variable‐temperature magnetic susceptibility data gave the magnetic coupling constant, 2J = –0.98 cm–1. Theoretical calculations, based on density functional theory (DFT) coupling with the broken‐symmetry approach (BS), revealed that the π–π stacking magnetic coupling pathways resulted in weak ferromagnetic interactions with 2J = 4.86 cm–1 and 2J = 4.16 cm–1, respectively, for the adjacent NiII ions with separations of 8.568(19) Å and 8.749(32) Å, respectively; whereas the magnetic coupling pathway of the C–H ··· O short contact intermolecular interaction led to a weak antiferromagnetic interaction with 2J = –17.62 cm–1 for the adjacent NiII ions with a separation of 10.291(26) Å. The ferromagnetic coupling sign can be explained by the McConnell I spin‐polarization mechanism.  相似文献   

3.
Two tetranuclear Ni(II) complexes: [Ni4(HL1)4] ⋅ H2O ( 1 ) and [Ni4(HL2)4] ⋅ 1.5 dmf ( 2 ) where dmf=dimethylformamide, H3L1=4-(tert-butyl)-2-(((2-hydroxy-5-nitrophenyl)imino)methyl)-6-(hydroxymethyl)phenol and H3L2=4-(tert-butyl)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)-imino)methyl)phenol, have been prepared and characterized by single crystal X-Ray diffraction, elemental analysis and FT-IR spectroscopy. The solid-state structures reveal the formation of highly symmetric and asymmetric [Ni4O4] cubane cores in complexes 1 and 2 , respectively. Extensive magnetic studies show that both complexes present ferromagnetic exchange interactions between the Ni(II) ions within the cubane core with g=2.113(3), J1=−7.89(8) cm−1, J2=13.3(1) cm−1 and |D|=11.3(4) cm−1 (for 1 ) and g=2.206(4), J1=1.0(1) cm−1, J2=7.8(1) cm−1 and |D|=8.7(2) cm−1 (for 2 ). The large anisotropy, high ground spin state (arising from the ferromagnetic coupling) and the good isolation of the clusters provided by the Schiff base ligands, give rise to the first examples of field-induced single-molecule magnets (FI−SMM) in Ni4O4 clusters and to the highest energy barrier reported to date in a Ni4O4 cluster.  相似文献   

4.
Abstract

Two new oxamate-containing manganese(II) complexes, [{Mn(H2edpba)(H2O)2}2]n (1) and [Mn(H2edpba)(dmso)2]?dmso?CH3COCH3?H2O (2) (H4edpba = N,N′-ethylenediphenylenebis(oxamic acid) and dmso = dimethylsulfoxide), have been synthesized and the structures of 1 and 2 were characterized by single crystal X-ray diffraction. The structure of 1 consists of neutral honeycomb networks in which each manganese(II) is six-coordinate by one H2edpba2? ligand and two carboxylate–oxygens from two other H2edpba2? ligands building the equatorial plane. Each manganese is connected to its nearest neighbor through two carboxylate(monoprotonated oxamate) bridges in an anti-syn conformation. A dmso solution of single crystals of 1 was placed under acetone atmosphere affording 2, whereas putting 2 in equimolar water:ethanol mixture results in 1. The molecular structure of 2 is made up of mononuclear manganese(II) units which are interlinked by weak C–H?π and edge-to-face π-stacking interactions leading to supramolecular chains along the crystallographic b axis. Magnetic measurements reveal the occurrence of an antiferromagnetic coupling between two manganese(II) ions through anti-syn carboxylate bridges for 1 [J = ?1.18 cm?1, the Hamiltonian being defined as H = ?J S1.S2] and very weak intrachain ferromagnetic interactions in 2 [J = + 0.046 cm?1, H = ?JiSi.Si + 1].  相似文献   

5.
The crystal structure of (AsPh4)2[ReN(H2O)(CN)4]·5H2O has been determined from three-dimensional X-ray diffraction data. The yellow crystals are monoclinic, space group P21/n with cell dimensionsa=15.482(1),b=19.950(2),c=16.999(1)? and β=101.69(6)o,Z=4,D expt=1.48(1)g cm−3 andD calc=1.52g cm−3. The anisotropic refinement of 7858 observed reflections converged toR=0.055. The [ReN(H2O)(CN)4]2− ion has a distorted octahedral geometry. Bond distances: Re≡N=1.639(8), Re−OH2=2.496(7) and Re−C(av)=2.11(1) ?. The rhenium atom is displaced by 0.35 ? out of the plane formed by the four carbon atoms of the cyano ligands towards the terminal nitrido ligand. TMC 2479  相似文献   

6.
Three Zn(II) complexes, [Zn2(bpp)2(FNA)2]·H2O (1), [Zn(bpp)(FNA)]·H2O (2), and Zn2(bpp)2(FNA)2 (3) (bpp = 1,3-bi(4-pyridyl)propane, H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesized and characterized by single-crystal and powder X-ray diffraction methods, IR spectroscopy, TG analyses, elemental analyses, and fluorescent analysis. In 1, the Zn(II) ions are linked by FNA anions and bpp into 2-D layers. The Zn(II) ions in 2 are bridged by FNA anions into chiral chains, which are interlinked by bpp into 3-D metal–organic framework with (65·8) CdS topology. Complex 3 features 1-D zigzag chains, which are interconnected by bpp ligands to give a 3-D framework with (6·74·8)(64·7·8) topology. Complexes 2 and 3 exhibit significant ferroelectric behavior (for 2 remnant polarization Pr = 0.050 μC cm?2, coercive field Ec = 1.13 kV cm?1, saturation of the spontaneous polarization Ps = 0.239 μC cm?2; for 3 Pr = 0.192 μC cm?2, Ec = 4.64 kV cm?1, Ps = 0.298 μC cm?2).  相似文献   

7.
Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core–shell structure of the monodisperse molecule magnet of [Gd52Ni56(IDA)48(OH)154(H2O)38]@SiO2 ( 1 a @SiO2) was prepared by encapsulating one high‐nuclearity lanthanide–transition‐metal compound of [Gd52Ni56(IDA)48(OH)154(H2O)38]?(NO3)18?164 H2O ( 1 ) (IDA=iminodiacetate) into one silica nanosphere through a facile one‐pot microemulsion method. 1 a @SiO2 was characterized using transmission electron microscopy, N2 adsorption–desorption isotherms, and inductively coupled plasma‐atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1=0.25 cm?1, J2=?0.060 cm?1, J3=?0.22 cm?1, J4=?8.63 cm?1, g=1.95, and z J=?2.0×10?3 cm?1 for 1 , and J1=0.26 cm?1, J2=?0.065 cm?1, J3=?0.23 cm?1, J4=?8.40 cm?1 g=1.99, and z J=0.000 cm?1 for 1 a @SiO2. The z J=0 in 1 a @SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.  相似文献   

8.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

9.
Reactions of copper salts, zoledronic acid, and 2,2′-bipyridine/1,10-phenanthroline in aqueous ethanolic solutions afforded four phosphonate oxygen-bridged copper complexes, Cu(bipy)(H4zdn)(HSO4) (1), [Cu2(bipy)2(H2zdn)(H2O)(Cl)]·4H2O (2), [Cu2(phen)2(H2zdn)(H2O)(Cl)]·2.5H2O (3), and [Cu3(bipy)3(H4zdn)(H2zdn)(SO4)]·5H2O (4) (H5zdn = zoledronic acid, bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline). The copper centers of 14 have square pyramidal coordination geometries. The Cu(II) ions are coordinated to bipy/phen, zoledronate, and HSO4?/Cl? forming mononuclear units for 1, dinuclear for 2 and 3, and trinuclear for 4. These building units are further extended into 3-D supramolecular networks via multiple hydrogen bond interactions. Temperature-dependent magnetic properties of 2 and 4 suggest weak antiferromagnetic coupling (J = ?4.53(8) cm?1 for 2, J = ?1.69(4) cm?1 for 4). The antitumor activity of 2 was evaluated against the human lung cancer cell line and indicates effective time- and dose-dependent cytotoxic effects.  相似文献   

10.
The oxalato-bridged dinickel(II) complex with the title ligand, [Ni2(L a H)2(μ-ox)](ClO4)2·2H2O (1), was prepared and its structure was determined by X-ray crystallography, as well as that of the monomeric nickel(II) complex, [Ni(L a H)ox]ClO4·3H2O (2). In Complexes 1 and 2, the ligand, L a , is folded along the N(4)–Ni(1)–N(11) axis. The antiferromagnetic coupling between the two nickel(II) centers in 1 was revealed and the coupling constant, J?=??17.4?cm?1, and g?=?2.11 were estimated. It was found that the oxalato-bridged dimer 1 was readily converted to the mononuclear cis-nickel(II) complex [NiL a (OH2)](ClO4)2 (3a), in basic aqueous solution. In [NiL a (CH3CN)]I2 (3b), which was derived from 3a, the aminomethyl pendant arm is coordinated to the Ni(II) ion and L a is folded along the N(1)–Ni(1)–N(8) axis.  相似文献   

11.
The reactions of [MIII(CN)6]3? (M = Cr or Co) with CuII complexes of a tridentate schiff base [Cu(aemp)Cl] or [Cu(aemp)Ac]2 (Haemp = 2-[(2-amino-ethylimino)-methyl]-phenol) give rise to 1D cyanide-bridged bimetallic coordination polymers [Cu4(aemp)4(H2O)2][Cr(CN)6]Cl (1) and [Cu3(aemp)3(H2O)][Co(CN)6]·2H2O·MeOH (2). In complex 1, the six cyanide ligands of the [Cr(CN)6]3? moiety are involved in bridging, while in complex 2 only five cyanide ligands act as bridges to give a neutral chain. Magnetic studies reveal that complex 1 exhibits intermetallic ferromagnetic coupling, with J = 8.2 cm?1.  相似文献   

12.
袁爱华  沈小平  周虎  陆路德 《化学学报》2005,63(19):1795-1801
将Ni(teta)(ClO4)2 (teta=5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)的DMF溶液和K3[Fe(CN)6]的水溶液在填充了琼脂冻胶的U型管中通过扩散反应, 得到了标题化合物(H2teta)2{[Ni(teta)][Fe(CN)6]2}•17H2O, 该化合物晶体属三斜晶系, 空间群P1, 晶胞参数为a=0.9998(2) nm, b=1.5514(3) nm, c=1.6647(4) nm, α=114.15(2)°, β=100.91(2)°, γ=93.42(2)°, V=2.2863(10) nm3, z=1, Dc=1.196 g•cm-3, F(000)=890, μ=5.84 cm-1, GOF=0.894, R1=0.0582, wR2=0.1446 [I>2σ(I)]. 该化合物的基本单元由2个[H2teta]2+阳离子、1个{[Ni(teta)][Fe(CN)6]2}4-阴离子和17个水分子组成, 它们之间通过N—H…N氢键而形成具有二维平面结构的超分子化合物. 1.8~300 K变温磁化率研究表明, 化合物中三核体系Fe (s=1/2)-Ni (s=1)-Fe (s=1/2)中心原子间通过氰基桥联而发生强的铁磁相互作用, 磁参数J=4.33 cm-1, g=2.6, θ=60 K. 通过TG-DTG测定了配合物的热稳定性.  相似文献   

13.
Partial reduction of the CuII ions in the aqueous system CuII–en–[Ni(CN)4]2? (1/1/1) (en is 1,2‐di­amino­ethane) yields a novel heterobimetallic mixed‐valence compound, poly­[[aqua­bis(1,2‐di­amino­ethane)copper(II)] [hexa‐μ‐cyano‐tetra­cyano­bis(1,2‐di­amino­ethane)­tricopper(I,II)­dinickel(II)] dihydrate], [Cu(C2H8N2)2(H2O)][Ni2Cu3(CN)10(C2H8N2)2]·2H2O or [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O. The structure is formed by a negatively charged two‐dimensional array of the cyano complex [Cu(en)2Ni2Cu2(CN)10]n2n?, [Cu(en)2(H2O)]2+ complex cations and water mol­ecules of crystallization. These last are involved in a complicated hydrogen‐bonding system. The cyano groups act as terminal, μ2‐bridging or μ3‐bridging ligands.  相似文献   

14.
Self-assembly of Zn2+, the pillar ligand N,N′-bis(4-pyridylformamide)-1,4-benzene, and [M(CN)4]2? (M = Ni, Pd, or Pt) formed three compounds [Zn(L)(H2O)2][M(CN)4]·3H2O (1–3). Single-crystal X-ray diffraction (XRD) analysis reveals that 1–3 are isostructural and consist of cyanide-bridged 2-D grid-type layers built of [Zn(L)(H2O)2]2+ chains cross-linked by [M(CN)4]2? units. Thermogravimetric and powder XRD analyses indicate that 1 has a high thermal stability and exhibits reversibility for desorption/resorption of water guest molecules.  相似文献   

15.
The reaction of Schiff base 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene (L) with either NiCl2·6H2O or [PdIICl2(CH3CN)2]/Na[BF4] in 1?:?1 stoichiometry yielded mononuclear ionic complexes, trans-[NiII(L)(H2O)2]Cl2·3H2O (1·3H2O) and [PdII(L)][BF4]2 (2), respectively; the reaction of L with [PdIICl2(CH3CN)2] in 1?:?2 ratio yielded dinuclear cis-[PdII 2(μ-L)Cl4] (3). Complexes 1–3 were characterized by vibrational spectroscopy and X-ray diffraction; diamagnetic 2 and 3 were also characterized by NMR in solution. The molecular structures of 1 and 2 displayed tetradentate coordination of L with formation of two five-membered and one six-membered chelate rings for both complexes. In 3, L showed bidentate coordination mode for each pyridylimine toward PdII. Complex 1 has distorted octahedral geometry around NiII and an extended hydrogen-bond network; distorted square planar geometry around PdII in 2 and 3 was observed.  相似文献   

16.
A new 1-D alternating copper(II) polymer, [Cu2(L)(OAc)4]n (1) (L = 5-chloro-2-(pyridine-2-yl)benzo[d]thiazole), has been isolated and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy, and magnetic susceptibility. The complex crystallized in the triclinic space group P-1, a = 8.2277(16) Å, b = 9.4233(19) Å, c = 15.831(3) Å, α = 103.38(3)°, β = 99.95(3)°, γ = 92.70(3)°, V = 1171.3(4) Å3, and comprises a 1-D polymer linked by three kinds of acetate-bridging modes in an alternating manner. UV–visible and fluorescence spectra revealed that 1 is bound to CT-DNA in a partial intercalation mode. Through gel electrophoresis assays, 1 displayed an efficient oxidative cleavage activity on supercoiled plasmid DNA (pUC19) in the presence of H2O2. Magnetic measurements were performed from 2 to 300 K, and the experimental results were satisfactorily reproduced with J1 = –160 ± 20 cm?1, J2 = 5.8 ± 0.2 cm?1, zJ′ = 0.381 ± 0.005 cm?1 and g = 2.1, showing antiferromagnetic coupling between Cu1 and Cu1i, ferromagnetic exchange between Cu2 and Cu2ii, and a weak ferromagnetic molecular field correction accounting for all interspecies interactions.  相似文献   

17.
Four azido-bridged dinuclear Mn(II) complexes, [Mn2(phen)4 μ-1,1-N3)2][FeIII(bpmb)(CN)2]2·H2O (1), [Mn2(phen)4(μ-1,1-N3)2][FeIII(bpClb)(CN)2]2·H2O (2), and [Mn2(phen)4(μ-1,1-N3)2][MIII(bpdmb)(CN)2]2·3H2O [M = Fe (3) or Cr (4); phen = 1,10-phenanthroline, bpmb2– = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2– = 1,2-bis(pyridine-2-carboxamido) 4-chloro-benzenate, bpdmb2– = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate], have been synthesized using the synthetic strategy of large anion inducement. Single-crystal X-ray diffraction analysis reveals that all four complexes are doubly end-on (EO) azido-bridged binuclear Mn(II) complexes with two large [M(L)(CN)2] (L = bpmb2?, bpClb2?, or bpdmb2?) building blocks acting as charge-compensating anions. The magnetic properties of the complexes have been investigated, and the results indicate that the magnetic coupling between two Mn(II) centers through the EO azide bridges is ferromagnetic, with J = 0.64(1) cm?1 for 1, 0.43(1) cm?1 for 2, 0.50(1) cm?1 for 3, and 0.66(2) cm?1 for 4. The magneto-structural relationships of EO azido-bridged Mn(II) systems are discussed.  相似文献   

18.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

19.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

20.
Three trinuclear sandwich-type cyanide-bridged MIII–NiII complexes, {[Ni(cyclm)[Fe(bpb)(CN)2]2}·8H2O (1), {[Ni(cyclm)[Cr(bpb)(CN)2]2}·2H2O (2), and {[Ni(cyclm)[Co(bpb)(CN)2]2}·CH3OH·2H2O (3) (cyclm?=?1,4,8,11-tetraazacyclotetradecane), have been synthesized using K[M(bpb)(CN)2] (M?=?Fe, Cr, Co; bpb?=?1,2-bis(pyridine-2-carboxamido)benzenate) as building block and one Ni(II) compound containing a 14-membered macrocycle ring as assembling segment. All the complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray structure determination. Single X-ray diffraction analysis shows similar sandwich-like structures, in which the two cyanide-containing building blocks are monodentate through one of their two cyanides, coordinated face to face to the central Ni(II). Investigation of the magnetic properties of 1 and 2 reveals ferromagnetic magnetic coupling between the neighboring Fe(III)/Cr(III) and Ni(II) through the bridging cyanide. A best-fit to the magnetic susceptibilities of 1 and 2 based on the trinuclear M2Ni model leads to magnetic coupling constants J?=?5.47(1)?cm?1 for 1 and J?=?6.37(2)?cm?1 for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号