首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Abstract

Four new mixed complexes of Co(II) with N,N′ N″,N′″-tetrakis(2-pyridylmethyl)-1, 4, 8, 11-tetraazacyclotetradecane (tpmc) and bridged α- or β-aminocarboxylato ligands of general formula [Co2(Y)tpmc](C1O4)3 zH2O where Y = glycinato, S-alaninato, S-aminobutyrato, β-aminobutyrato ion, and z = 0, 0.5 or 1 were isolated. The complexes were characterised by elemental analysis, electronic and IR spectroscopy, magnetic measurements and cyclic voltam-metry. A structure with μ-O, O′-coordination of the aminocarboxylato ligand, and exo coordination of Co(II) ions and tpmc is proposed. The complexes exhibit different electrochemical activities; glycinato and S-alaninato complexes are electrochemically active, whereas S-aminobutyrato and β-aminobutyrato complexes are electrochemically inactive under the given conditions.  相似文献   

2.

The bis[N-methyl-N-(N'-methylbenzamido)-β-alaninato]copper(II), Cu(II)[Me-MeBA]2, is synthesized by reacting bis(β-alaninato)copper(II) with formaldehyde and benzamide in the presence of a base (NaOH) over the pH range 5.5-8.5. However, the bis[N,N-di (N'-methylbenzamido)-β-alaninato]metal(II) complexes, M(II)[DMeBA]2 (M = Zn, Ni, Co), are obtained when the respective bis(β-alaninato)metal(II) reacts with formaldehyde and benzamide in the presence of the base in similar pH ranges. Nevertheless, Cu(II)[DMeBA]2 can be synthesized if the reaction is carried out in the absence of base. The M(II)[DMeBA]2 complexes are characterized by elemental analysis, IR and UV-Visible spectroscopy and magnetic susceptibility measurements. X-ray crystal structure analysis of Cu(II)[Me-MeBA]2 suggests that the N'-methylbenzamido substituent of the β-alanine moiety is formed through Mannich aminomethylation, and that the other N-methyl substituent is formed via a Canizzaro-type methylation.  相似文献   

3.
Two novel acyclic copper(II) complexes, Cu(L1) (1) {L1 = N,N-1,2-ethanediylbis[N-(phenylmethyl)glycinato]} and Cu(L2) (2), {L2 = N,N-1,2-ethanediylbis[N-[(3-nitrophenyl)methyl]glycinato]} have been synthesized and characterized by elemental analysis and ES-MS. Thermal denaturation, fluorescence spectroscopy and cyclic voltammetry have been conducted to assess the interaction of the two complexes with calf thymus DNA. Interestingly, the two copper(II) complexes have been found to cleave circular plasmid pBR322 DNA to the nicked form (Form II) and the linear form (Form III) under aerobic conditions.  相似文献   

4.
Four novel Schiff base ligands and their copper(II) complexes, [Cu(L1)2] (1), [Cu(L2)2] (2), [Cu(L3)2] (3), and [Cu(L4)2] (4), were synthesized and characterized by elemental analyses, FT-IR, and UV–Vis spectroscopy. The ligands were synthesized from the condensation of 2-methoxyethylamine with various salicylaldehyde derivatives (x-salicylaldehyde for HLn, x = H (n = 1), 5-Br (n = 2), 3-OMe (n = 3), and 4-OMe (n = 4)). The molecular structures of 1, 2, and 3 were determined by the single crystal X-ray diffraction technique. The redox behavior studies of the complexes in acetonitrile display the electronic effects of the groups on the redox potential. The antioxidant activity of the Schiff base ligands and their Cu(II) complexes was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method and FRAP assay. Furthermore, the in vitro anticancer activity of compounds was screened, including MTT and migration assays against gastric cancer cell line (MKN-45). The results show that all ligands and complexes have antioxidant and anticancer activity in a concentration-dependent way.  相似文献   

5.
New complexes of type [Cu(HTBG)2]Cl2 (1), [Cu(TBG)2]·3H2O (2) and [CuL]·nH2O (3) L:L1, n = 2 and (4) L:L2, n = 1 (HTBG: 2-tolylbiguanide, L1 and L2: ligands resulted from 2-tolylbiguanide, ammonia/hydrazine and formaldehyde one pot condensation) were synthesised and characterised. The features of complexes have been assigned from microanalytical, IR and UV–Vis data. Redox behaviour was established by cyclic voltammetry. The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against Gram-negative and Gram-positive strains isolated from the hospital environment. The thermal analyses have evidenced the thermal intervals of stability and also the thermodynamic effects that accompany them. After water elimination, complexes have a similar thermal behaviour. Processes as water elimination, melting, chloride anion removal as well as oxidative degradation of the organic ligands were observed. The final product of decomposition was copper (II) oxide.  相似文献   

6.
The investigations concerning the thermal behaviour of a series of Ni(II) and Cu(II) complexes of type [NiLCl2mH2O ((1) L:L1, m=6; (3) L:L2, m=4) or [CuLCl]nCl n ·mnH2O ((2) L:L1, m=6; (4) L:L2, m=4) are presented. The ligands L(1) and L(2) have been synthesised by template condensation of 3,6-diazaoctane-1,8-diamine or 1,2-diaminoethane with formaldehyde and 2-amino-4H-1,2,4-triazole. The bonding and stereochemistry of the complexes have been characterised by IR, electronic and magnetic studies at room temperature. The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against planktonic as well as biofilm embedded Gram-negative, Gram-positive and fungal strains. The thermal behaviour provided confirmation of the complexes composition as well as the number and nature of water molecules and the intervals of thermal stability.  相似文献   

7.
New bidentate Schiff-base ligands 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarbothioamide HL1 and 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarboxamide HL2 were synthesized from the condensation of 2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-one with thiosemicarbazide and semicarbazide, respectively. Homoleptic complexes of these ligands, of general formula K[Cr(L n )2Cl2], K2[Mn(L n )2Cl2], K2[Fe(L1)2Cl2] and [M(L n )2] (where M = Co(II), Ni(II) Cu(II), Zn(II), Cd(II), and Hg(II) ions; n = 1 or 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometry for Cr(III), Mn(II), and Fe(II) complexes, square planar for Cu(II), Co(II), and Ni(II) complexes and tetrahedral for Zn(II), Cd(II), and Hg(II) complexes.  相似文献   

8.
Two copper(II) complexes of disubstituted 2,2′-bipyridine (bpy = 2, 2′-bipyridine) with tetraalkylammonium groups, [Cu(L1)2Br](ClO4)5·2H2O (1) and [Cu(L2)2Br](ClO4)5·H2O (2) (L1 = [4, 4′-(Et3NCH2)2-bpy]2+, L2 = [4, 4′-((n-Bu)3NCH2)2-bpy]2+), have been synthesized and characterized. X-ray crystallographic study of 1 indicates that Cu(II) is a distorted trigonal bipyramidal or square pyramid. DNA binding of both complexes was studied by UV spectroscopic titration. In the presence of reducing reagents, the cleavage of plasmid pBR322 DNA mediated by both complexes was investigated and efficient oxidative cleavage of DNA was observed. Mechanistic study with reactive oxygen scavengers indicates that hydrogen peroxide and singlet oxygen participate in DNA cleavage.  相似文献   

9.
A series of new complexes with mixed ligands of the type [ML(C3H3O2)2nH2O (((1) M=Mn, n=1; (2) M=Co(II), n=2; (3) M=Ni(II), n=4; (4) M=Cu(II), n=1.5; (5) M=Zn(II), n=0; L=3-amino-1,2,4-triazole and (C3H3O2)=acrylate anion) were synthesized and characterised by chemical analysis and IR data. In all complexes the 3-amino-1,2,4-triazole acts as bridge while the acrylate acts as bidentate ligand except for complex (5) where it is found as unidentate. The thermal behaviour steps were investigated in nitrogen flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion and 3-amino-1,2,4-triazole degradation respectively. The final products of decomposition are the most stable metal oxides, except for complex (4) that leads to metallic copper.  相似文献   

10.
The new Mannich bases bis(1,4-diphenylthiosemicarbazide methyl) phosphinic acid H3L1 and bis(1,4-diphenylsemicarbazide methyl) phosphinic acid H3L2 were synthesised from the condensation of phosphinic acid, formaldehyde with 1,4-diphenyl thiosemicarbazide and 1,4-diphenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formulae K2[CrIII(L n )Cl2], K3[MnII(L n )Cl2] and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Hg(II); n = 1, 2), are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Co(II), Ni(II) and Cu(II) complexes and tetrahedral for the Zn(II) and Hg(II) complexes.  相似文献   

11.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

12.
Abstract

The crystal structures of two mixed-ligand copper(II) complexes having iminodiacetate(2-) (IDA) or N-carboxymethyl-D,L-threoninato(2-) ion (CMT) as terdentate ligands and imidazole (ImH) as an N-heterocyclic ligand are reported. Both compounds crystallize in the orthorhombic system, space group Pbca with Z = 8. Aqua(imidazole)(iminodiacetato)copper(II) monohydrate (I,R = 0.065, R w = 0.075) consists of H2O molecules and [Cu(IDA)(ImH)(H2O)] complex units in a hydrogen bonding network. The structure of imidazole(N-carboxymethyl)-D,L-threoninatocopper(II) (IV, R = 0.066, Rω 0.078) is built up of hydrogen bonded polynuclear chains. In both compounds the Cu(II) ion exhibits a flattened and distorted square-based pyramidal coordination, with a terdentate aminoacidate ion, IDA or CMT, and one ImH ligand at the base and H2O (in I) or the oxygen atom of the OH side chain from one adjacent CMT ion (in IV) as the fifth apical ligand. The nearly coplanar conformation of the two five-membered chelate rings in I and IV is discussed in connection with the known structure of corresponding aquacomplexes (with H2O instead of ImH) and the ability of terdentate aminoacids to give ternary Cu(II) complexes having two N-heterocyclic donors (2 ImH or one 2,2′-bipy) per Cu(II) atom.  相似文献   

13.
Abstract

The reaction of bis(β-alaninato)copper(II) with formaldehyde results in the formation of blue crystals of aquabis(N,N-dimethyl-β-alaninato)copper(II) hexahydrate, [Cu(C5H10NO2)2(OH2)].6H2O which crystallize in the monoclinic space group C2/c with unit cell dimensions a = 20.799(2), b = 8.112(1), c = 23.639(1)Å, β = 96.50(1)° and Z = 8. The structure has been refined to final R = 0.047 and Rw = 0.053 for 1690 reflections with I ≥ 2.55σ(I).  相似文献   

14.
Two new copper(II) complexes, [CuL2] (1) and [Cu2L2(NCS)2] · 2CH3CN (2) (HL = 2-bromo-4-chloro-6-[(2-morpholin-4-ylethylimino)methyl]phenol), have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Complex 1 was synthesized by reaction of HL with copper(II) acetate in methanol, while 2 was synthesized by adding ammonium thiocyanate to a methanol/acetonitrile (V : V = 2 : 1) solution of 1. Complex 1 crystallizes in the P21/n space group, and the thiocyanato-bridged dinuclear copper(II) complex, 2, crystallizes in the Pbcn space group. The Cu in 1 is four-coordinate square-planar with two imine N and two phenolate O atoms from two Schiff-base ligands. The Cu in 2 is five-coordinate square-pyramidal with NNO donor atoms of one Schiff-base ligand and one N atom of a bridging thiocyanate ligand defining the basal plane, and with one S atom of another bridging thiocyanate ligand occupying the apical position.  相似文献   

15.
Salicylaldehyde 2-phenylquinoline-4-carboylhydrazone (H2L), and its novel copper(II), cobalt(II), and nickel(II) complexes MHL · Cl · nH2O [M=Cu n = 3 (1), M=Co n = 2 (2), M=Ni n = 3.5 (3)] have been synthesized and characterized by elemental analysis, molar conductivity, spectroscopic, and thermal analysis. The interaction of these complexes with calf thymus DNA was investigated by UV absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and viscosity measurements. The results suggest that these complexes bind to DNA via an intercalation binding mode and their affinity to DNA follows the order of 3 > 1> 2. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
A new series of copper(II) mononuclear and copper(II)–metal(II) binuclear complexes [(H2L)Cu] ? H2O, [CuLM] ? nH2O, and [Cu(H2L)M(OAc)2] ? nH2O, n = 1–2, M = Co(II), Ni(II), Cu(II), or Zn(II), and L is the anion of dipyridylglyoxal bis(2-hydroxybenzoyl hydrazone), H4L, were synthesized and characterized. Elemental analyses, molar conductivities, and FT-IR spectra support the formulation of these complexes. IR data suggest that H4L is dibasic tetradentate in [(H2L)Cu] ? H2O and [Cu(H2L)M(OAc)2] ? nH2O but tetrabasic hexadentate in [CuLM] ? nH2O (n = 1–2). Thermal studies indicate that waters are of crystallization and the complexes are thermally stable to 347–402°C depending upon the nature of the complex. Magnetic moment values indicate magnetic exchange interaction between Cu(II) and M(II) centers in binuclear complexes. The electronic spectral data show that d–d transitions of CuN2O2 in the mononuclear complex are blue shifted in binuclear complexes in the sequences: Cu–Cu > Cu–Ni > Cu–Co > Cu–Zn, suggesting that the binuclear complexes [CuLM] ? nH2O are more planar than the mononuclear complex. The structures of complexes were optimized through molecular mechanics applying MM +force field coupled with molecular dynamics simulation. [(H2L)Cu] ? nH2O, [CuLM] ? nH2O, and the free ligand were screened for antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligand is inactive against all studied bacteria. The screening data showed that [CuLCu] ? H2O > [(H2L)Cu] ? H2O > [CuLZn] ? H2O > [CuLNi] ? 2H2O ≈ [CuLCo] ? H2O in order of biological activity. The data are discussed in terms of their compositions and structures.  相似文献   

17.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-mercaptoethylamine is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-mercaptoethylamine leads to 2,9-bis(2-ethanthiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with manganese, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptoethyl)-2-azaethene]-1,10-phenanthroline (L). The [M(L)Cl2] complexes [where M = Mn(II), Ni(II), Cu(II) and Zn(II) ions] were characterized by physical and spectroscopic measurements which indicated that the ligand is a tetradentate N4 chelating agent.  相似文献   

18.
Two new N2O2 unsymmetrical Schiff bases, H2L1 = 3-[({o-[(E)-(o-hydroxyphenyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol and H2L2 = 3-[({o-[(E)-(2-hydroxy-1-naphthyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol, and their copper(II) and nickel(II) complexes, [CuL1] (1), [CuL2] (2), [NiL1] (3), and [NiL2] (4), have been synthesized and characterized by elemental analyses and spectroscopic methods. The crystal structures of these complexes have been determined by X-ray diffraction. The coordination geometry around Cu(II) and Ni(II) centers is described as distorted square planar in all complexes with the CuN2O2 coordination more distorted than the Ni ones. The electrochemical studies of these complexes indicate a good correlation between the structural distortion and the redox potentials of the metal centers. The ligand and metal complexes were also screened for their in vitro antibacterial activity.  相似文献   

19.
Two copper(II) complexes of L-arginine, trans-[Cu(l-Arg)2(NO3)]NO3 · 3H2O (1) and {cis-[Cu(l-Arg)2](NO3)2 · 3H2O} n (2) (Arg = arginine) were prepared by reaction of Cu(NO3)2 · 3H2O and L-arginine in acetone and aqueous solution, respectively. X-ray analysis reveals 1 crystallizes in a monoclinic system, P21 with a = 10.3857(15), b = 16.885(3), c = 15.9586(19) Å, β = 15.9586(19)°, Z = 4, V = 2654.2(6) Å3. The copper(II) centers lie in a distorted N2O3 square-pyramidal environment. While 1 adopts a mononuclear structure, and the axial position occupied by a nitrate with Cu1–O9 = 2.535 Å and Cu2–O20 = 2.581 Å, 2 features a 1-D infinite chain structure. In 1, adjacent monomeric units connect with each other to give a 2-D layer structure of (4, 4) nets through hydrogen bonds between the guanidinium and carboxylic groups of arginine, and 2-D layers further assemble to a 3-D supermolecular structure via a series of inter-layer hydrogen bonds.  相似文献   

20.
A series of neutral mononuclear complexes [M{κ2S,S-S2C-piperazine-C2H4N=C(R)}n] {R?=?Ph; M?=?Co(III) 1, Ni(II) 2, Cu(II) 3, Zn(II) 4; R?=?Naph; M?=?Co(III) 5, Ni(II) 6, Cu(II) 7, Zn(II) 8; n = 2 for 2–4, 6–8 and n = 3 for 1, 5} bearing pendant Schiff base moieties were synthesized through self-assembly involving N-[phenylmethylidene]-2-piperazin-1-ylethanamine (L1) or N-[naphthylmethylidene]-2-piperazin-1-ylethanamine (L2) with two equivalents each of CS2 and corresponding metal acetates. The complexes 1–8 were characterized by microanalysis, ESI-MS, IR, 1H, 13C NMR, DEPT 135, UV–visible absorption, and emission spectroscopy. Complexes 1, 3, and 8 exhibit fluorescence emissions at 342, 344, and 348 nm upon excitation at 273 (for 1 and 3) and 263 (for 8) with concomitant Stokes shifts of 69, 71, and 85 nm. The spectral and magnetic moment data support octahedral geometry around Co(III) and square planar/tetrahedral geometry around other metal centers. Thermal stabilities of 1–8 have been investigated by thermogravimteric analysis. The cyclic voltammograms clearly suggest that the complexes exhibit electroreduction principally associated with pendant imine moieties except Cu(II) complex 7 which displays quasi-reversible reduction corresponds to the Cu(II)/Cu(I) redox couples, in addition to reversible electroreduction of pendant imine groups associated with the coordinated ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号