首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new N2O2 unsymmetrical Schiff bases, H2L1 = 3-[({o-[(E)-(o-hydroxyphenyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol and H2L2 = 3-[({o-[(E)-(2-hydroxy-1-naphthyl)methylideneamino]phenyl}methyl)imino]-1-phenyl-1-buten-1-ol, and their copper(II) and nickel(II) complexes, [CuL1] (1), [CuL2] (2), [NiL1] (3), and [NiL2] (4), have been synthesized and characterized by elemental analyses and spectroscopic methods. The crystal structures of these complexes have been determined by X-ray diffraction. The coordination geometry around Cu(II) and Ni(II) centers is described as distorted square planar in all complexes with the CuN2O2 coordination more distorted than the Ni ones. The electrochemical studies of these complexes indicate a good correlation between the structural distortion and the redox potentials of the metal centers. The ligand and metal complexes were also screened for their in vitro antibacterial activity.  相似文献   

2.
Two transition metal complexes with azide and 3,4-di(2′-pyridyl)-1,2,5-oxadiazole (dpo), [Cu2(dpo)2(N3)4] (1), and [Mn(dpo)2(N3)2] (2), have been synthesized and characterized by single-crystal X-ray diffraction. The Cu(II) complex is binuclear with double end-on (EO) azido bridges, in which each Cu(II) ion assumes a distorted square pyramidal geometry, and each EO azido bridge adopts a quasi-symmetric fashion. In contrast, the Mn(II) complex is mononuclear, in which the Mn(II) ion is ligated by two dpo ligands and two terminal azide ions, with a distorted octahedron geometry. Magnetic studies on the Cu(II) complex revealed that the double EO azido bridge mediates ferromagnetic coupling with J=12.8 cm−1.  相似文献   

3.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

4.
Tetrahedrally distorted copper(II) sparteine pseudohalide complexes having a CuN4 chromophore were prepared and characterized by various spectroscopic techniques and X-ray crystallography. Among them, the crystal structures of copper(II) isothiocyanate complexes with two sparteine epimers, (−)-l-sparteine (Sp) and (−)-α-isosparteine (α-Sp), were determined. The NSp–Cu–NSp plane in copper(II) (−)-l-sparteine isothiocyanate [Cu(Sp)(NCS)2] and copper(II) (−)-α-isosparteine isothiocyanate [Cu(α-Sp)(NCS)2] is twisted by 58.2(6)° and 52.2(9)°, respectively, from the NNCS–Cu–NNCS plane. Based on the values of the dihedral angles and tilted distances of these two complexes, the geometry around Cu(II) in Cu(α-Sp)(NCS)2 is more distorted from the perfect tetrahedron than that in Cu(Sp)(NCS)2. For copper(II) sparteine pseudohalide (NCS and N3) complexes having a CuN4 chromophore, the EPR and the optical spectral data were collected. The results of X-ray crystallography and ESR spectroscopy are in a good agreement with the assumption that the degree of distortion from planarity to tetrahedron will reduce the A|| value of four-coordinate copper(II) sparteine pseudohalide complexes.  相似文献   

5.
Novel copper(II) complex of the formula [Cu(phen)2OCrO3](phen)0.5 ·4H2O (1) (phen = 1,10-phenantroline) was prepared in the crystalline form and characterized by X-ray diffraction and spectroscopic methods (IR-FIR, NIR-Vis–UV, EPR). In the solid state, the CuN4O chromophore adopts a slightly distorted square-pyramidal geometry around the Cu2+ ion with a magnitude of a distortion parameter τ = 0.14. The chromate unit in (1) was found to be a monodentate.  相似文献   

6.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-3-propionic acid (Hpmpa) and bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba), react with CuCl2 to give rise to the mononuclear complexes [Cu(Hpmpa)Cl]Cl · 2H2O (1) and [Cu(Hpmba)Cl2]· H2O (2). These complexes have been characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. Crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the three nitrogen atoms of the Hpmpa ligand and one chloride anion occupying the basal plane and an oxygen atom from the carboxylate group coordinating the axial position. In (2), the coordination environment around the copper(II) ion reveals a distorted square-pyramids with three nitrogen atoms of the Hpmba ligand and one chloride anion that comprise the basal plane, whereas the apical position is filled by the chloride anion. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuIII/CuI processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the N-pendant carboxylate groups.  相似文献   

7.
Three new mononuclear Cu(II) and Co(III) complexes [Cu(L)Cl]ClO4 (1), [Cu(L)Cl(SCN)] (2), and [Co(L)(N3)3] (3), where L is a reduced Schiff-base ligand bi(2-fluorobenzylaminoethyl)amine, were synthesized and characterized. X-ray crystallographical analysis reveals that the Cu(II) atom adopts a square-planar environment in complex 1, while the geometry in 2 can be described as distorted square-pyramidal. The Co(III) atom in 3 is in a distorted octahedral geometry. Three complexes were investigated for their inhibitory activities in vitro against jack bean urease. The Cu(II) complexes 1 and 2 were found to have excellent inhibitory activities. The Co(III) complex 3 was also shown to have activity comparable to that of acetohydroxamic acid.  相似文献   

8.
Two mononuclear copper(II) complexes, [Cu(C4H3N2O2)2?·?4H2O] (1) and [Cu(C12H11N2O2Cl2)2] (2), were synthesized and structurally characterized by single-crystal X-ray analysis. The copper(II) adopts a square-planar environment in 1, while the geometry in 2 can be described as distorted square-pyramidal. Complexes 1 and 2 were evaluated for their inhibitory activities against jack bean urease in vitro and both were found to have strong inhibitory activities comparable to that of acetohydroxamic acid. A docking simulation was performed to position 2 into the jack bean urease active site to determine the probable binding conformation.  相似文献   

9.
The crystal structures of the title compounds, [Cu(C15H11N2O2)2(C14H15N)2] and [Cu(C15H11N2O2)2(C14H15N)2]·2CHCl3, respectively, have been determined. The red disolvate complex affords a square‐planar CuN4 coordination environment in which the CuII atom lies on a centre of symmetry. The blue solvent‐free complex affords a distorted square‐pyramidal CuN4O coordination environment and adjacent mol­ecules form centrosymmetric dimers. A comparison of the different crystal structures focuses on the role of the solvent mol­ecules in supramolecular assemblies of the copper(II) complexes.  相似文献   

10.
《Journal of Coordination Chemistry》2012,65(16-18):2510-2525
Abstract

Two triply-bridged dinuclear copper(II) complexes of formula [LCu(μ-OH)(μ-OAc)(μ-X)CuL]X?0.5H2O where L is a bidentate ligand of N-(pyridine-2-ylmethyl)propane-2-amine and X=Cl, 1 and Br, 2 were synthesized and characterized by elemental analyses, spectroscopic techniques (IR, UV–Vis, EPR), thermal analysis, conductance measurements, and single-crystal X-ray structure determination. The structures of both complexes are similar. The complexes show a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O2X chromophore in which both copper(II) ions are connected by a hydroxo bridge and a triatomic syn-syn carboxylato bridge in equatorial positions and a halide ion bridge at the axial site. The chromotropism behavior of the complexes, including solvato-, thermo-, and halochromism, were investigated in detail. Their halochromism was investigated in the pH range of 2.0–11.0 by visible absorption spectroscopy. The reversible color variations from blue to colorless are attributable to deprotonation and protonation of the ligands. The complexes show reversible thermochromism in solution due to dissociation and recombination of ligands to copper ions.  相似文献   

11.
The bis(N-acetyl-l-alanine)copper(II) monohydrate for which magnetic data and electronic and IR spectra suggest a copper-acetate monohydrate type structure, was prepared. Substitution of the water molecule by some amines was made to investigate their effect on the amino acid coordination and on the geometry around the copper ion. For the adducts of monodentate heterocyclic amines such as N-methylpiperazine, piperidine, morpholine, pyridine, 3- and 4-methylpyridine (CuL2B2) and of bidentate amines such as piperazine, ethylenediamine, 2,2′- and 4,4′-bipyridine (CuL2B) in the solid state or chloroform solution, magnetism, electronic spectra (one d-d band in the 14,500–18,700 cm−1 spectral region, depending on the bascity or steric interference of the amines) and IR spectra suggest a square-planar or strongly distorted tetragonal arrangement around the copper ion with a CuN2O2 or CuN4 chromophore. For the Cu(N-acll-ala)2B2 (B  N-methylpiperazine, piperidine and morpholine) adducts in chloroform solution in the presence of excess amine, electronic (two d-d bands) and IR spectra indicate tetragonal arrangement around the copper ion with CuN4O2 chromophore, while for the Cu(N-ac-l-ala)2 · o-phen adduct in the solid state and chloroform solution they suggest the presence of 6-coordinate cis-octahedral species, with CuN2O4 chromophores. In all the adducts studied the IR spectra exclude any interaction between the peptide group and the metal ion.  相似文献   

12.
《Polyhedron》1999,18(21):2811-2820
The complexes [Ni(L2)]Cl2·10H2O (1), [Cu(L2)](ClO4)2·3H2O (2), [Cu2(L2)(H2O)2Cl2]Cl2 (3) and [Zn(L2)]Cl2·10H2O (4) (L2=2,13-bis(2-pyridylmethyl)-3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) have been synthesized and characterized by X-ray crystallography, electronic absorption, 13C NMR and magnetic susceptiblity as well as cyclic voltammetry. The crystal structures of 1 and 4 show that the metal ion has a slightly distorted octahedral geometry with two nitrogen atoms of the pendant arms at the axial positions. However, 2 exhibits a square-planar geometry, coordinated by secondary and tertiary nitrogen donors of the macrocycle. Furthermore, 3 reveals a binuclear structure and a center of symmetry in which the each copper ion is coordinated by a distorted square-pyramidal geometry with an N3Cl basal plane and a water molecule in the apical position. The magnetic behavior for 3 shows that a ferromagnetic interaction between the copper(II) ions is predominant at intermediate temperature and then a weaker antiferromagnetic coupling is involved at lower temperature. Cyclic voltammetric studies for 13 indicate that 1 undergoes quasi-reversible one-electron oxidation to the Ni(III) and reversible one-electron reduction to the Ni(I), 2 undergoes a irreversible one-electron reduction to the Cu(I) state, while 3 undergoes an overall quasi-reversible two-electron reduction to the binuclear Cu(I) complex.  相似文献   

13.
N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline (EtAIDB) and its transition metal complexes, [Cu(EtAIDB)Br2]·EtOH {dibromo[N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline] copper(II) ethanol} (1) and [Zn(EtAIDB)Br2] {dibromo[N,N-bis(N-methyl-2-ylmethylbenzimidazole)aniline] zinc(II)} (2), have been synthesized and characterized by elemental analysis, molar conductivity, UV–visible, and IR spectroscopy. The X-ray crystallographic studies of 1 and 2 have shown two different arrangements: 1 is distorted square-based pyramidal, while 2 can be treated as distorted tetrahedral. The cyclic voltammogram of 1 represents quasi-reversible Cu2+/Cu+ pairs. In vitro antioxidant tests showed that 1 had significant antioxidant activity against superoxide and hydroxy radicals.  相似文献   

14.
The title compound, potassium bis(ethylenediamine‐N,N′)copper(II) hexacyanoferrate(III), K[Cu(C2H8N2)2]‐[Fe(CN)6], contains [Cu(en)2]2+ and [Fe(CN)6]3? complex ions, where en is ethylenediamine. The FeIII and K+ ions lie on twofold axes and the CuII atom lies on an inversion center. The [Cu(en)2]2+ ion has square‐planar coordination with a mean Cu—N distance of 1.992 (2) Å and the [Fe(CN)6]3? ion has distorted octahedral coordination with a mean Fe—C distance of 1.947 (2) Å.  相似文献   

15.
A new building block for molecule-based magnetic materials???thiophene-substituted nitronyl nitroxide, NIT2-thp, [1, NIT2-thp?=?4,4,5,5-tetramethyl-2-(thiophenal-2-yl)imidazoline-1-oxyl-3-oxide] and its copper(II) complex [Cu(hfac)2]3(NIT2-thp)2 (2) (hfac?=?hexafluoroacetylacetonate) have been synthesized and characterized structurally and magnetically. For 1, dimers were formed and arranged through intermolecular interactions, the shortest contact between nitroxide groups is 4.115?Å among adjacent dimers. In 2 two types of copper interaction with 1 give three colinear Cu(II) ions linked by two μ???1,4 bridging nitroxide ligands. The central metal ion is in a distorted octahedron, axially coordinated by two nitroxide oxygen atoms, while the two external metal ions are in distorted square-pyramidal environments with the nitroxide oxygen atom coordinated in the basal plane. Magnetic susceptibility data for 1 and 2 have been measured in the range 3–300?K. There are antiferromagnetic interactions (J?=??3.89?cm?1) between the dimers of 1 and also ferromagnetic interactions in 2. The magnetic properties of 1 and 2 are discussed in connection with their crystal structures.  相似文献   

16.
A copper(II) complex with 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)pyrimidin-4-amine (L), [CuLCl2], has been synthesized. This compound is formed irrespective of the Cu?:?L molar ratio (Cu?:?L?=?1?:?1, 2?:?1, and 20?:?1) in the MeOH/H2O/DMF mixture as a single product. ESI-MS data demonstrate that the additional amount of CuCl2 above the Cu?:?L?=?1?:?1 molar ratio, is effectively solvated, and high-nuclearity species are formed in trace amounts in the solution. The complex adopts a distorted square-pyramidal geometry with two chlorides and three nitrogen atoms from L. The electronic spectrum of the complex contains a broad band with a maximum at 12,820?cm?1 within the region characteristic for square-pyramidal chromophores CuA5 (A?=?Cl, N). Due to Cu?···?Cl contacts, the molecules of [CuLCl2] form the dinuclear [CuLCl2]2 unit. Surprisingly, the NH2-group participates in the formation of NH?···?Cl hydrogen bonds instead of the formation of (NH?···?N3(pyrimidine))2 synthon, which is common for N-heteroaromatic compounds containing the NH2-group in the α-position to aza-atom. These hydrogen bonds together with Cu?···?Cl contacts result in the formation of a 3-D-structure.  相似文献   

17.
The copper(II) complex [Cu(NO3)(PyTz)2](NO3) has been previously characterized means X‐ray powder diffraction and now studied by IR spectroscopy, UV‐Vis‐NIR diffuse reflectance, magnetic susceptibility measurement, electronic spin resonance (ESR) and thermal analysis. The results are correlated with a distorted square pyramidal coordination around copper(II) ion rather than the cis‐distorted octahedral stereochemistry of a CuN4OO′ chromophore in good concordance with their structure. Likewise, in order to indicate towards what square pyramidal isomer the complex is distorted, the method proposed by Carugo and Bisi has been applied to the structural data of [Cu(NO3)(PyTz)2](NO3). It is deduced that there is a large distortion from the trigonal bipyramid geometry, close to a square pyramid geometry, being produced almost exclusively through the B route of the Berry mechanism.  相似文献   

18.
Mononuclear and dinuclear copper(II) complexes [Cu2(μ-nap)4(3-pic)2] (1) and [Cu(nap)2(H2O)(4-pic)2] (2) have been synthesized in the presence of 3-picoline and 4-picoline. Two complexes were characterized by FT-IR, UV–vis spectroscopic methods and their thermal stabilities were determined by TG/DTA/DTG techniques. The crystal structures of 1 and 2 were established by X-ray analysis. X-ray structure analysis has shown that copper(II) has a distorted square-pyramidal geometry. Naproxenate is a bridging ligand in 1 and monodentate in 2. Two complexes have shown catalytic activity on oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations. The complexes were also screened for antimicrobial activity against pathogenic bacteria and fungi. The complexes exhibited antimicrobial activity against Entrococcus faecalis and Candida albicans.  相似文献   

19.
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10‐phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square‐pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three‐dimensional network of OW—H⋯O/OW hydrogen bonds, face‐to‐face π–­π interactions between the 1,10‐phenanthroline aromatic rings and a weak π–ring interaction are responsible for crystal stabilization.  相似文献   

20.
报道四核铜配合物[Cu2L2][Cu(pht)2]2[Hpht:苯妥英,即5,5-二苯基-2,2咪唑烷酮;L:N-(3-氨基丙基)二乙醇胺]的溶剂热合成、晶体结构及其性质研究.该晶体属单斜晶系,P21/n空间群,晶胞参数:a=0.9240(1)nm,b=2.4559(2)nm,c=1.5572(2)nm,β=97.489(2)o,V=3.5035(7)nm3,Dc=1.499Mg/m3(g/cm3),Z=2,F(000)=1636,μ=1.270mm-1,R1=0.0503,wR2=0.1135[I2σ(I)],GOF=1.014.XPS结合X射线单晶结构分析,表明该配合物分子有混价铜组成,包括两个Cu(I)和两个Cu(II),其中每个Cu(I)分别与两个苯妥英配体提供的氮原子配位,N—Cu(I)—N的夹角为177.1°,每个Cu(II)与L配体的五个配位原子配位(N2O3),形成一个稍变形四方锥结构,两个Cu(II)通过N-(3-氨基丙基)二乙醇胺中的一个羟基氧桥连接形成双核阳离子,琼脂扩散法测试结果表明配合物、配体和铜盐对3种受试细菌均有一定的活性.配合物与DNA的相互作用测定研究表明,该配合物是以插入方式与小牛胸腺DNA结合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号