首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nano-sized mixed-ligand Cd(II) coordination polymer, {[Cd(bpa)(4,4′-bipy)2(H2O)2](ClO4)2}n (1); bpa = trans-1,2-bis(4-pyridyl)ethane and 4,4′-bipy = 4,4′-bipyridine, has been synthesized by a sonochemical method and characterized by IR and 1H NMR spectroscopy. Compound 1 grows in one dimension by two different bridging ligands, 4,4′-bipy and bpa. The thermal stability of compound 1 in the bulk form and nano-sized was studied by thermogravimetric (TG) and differential thermal analysis (DTA). The crystallinity of this compound was studied by X-ray powder diffraction and compared with an XRD simulation of the single crystal data. CdO nanoparticles were obtained by direct calcination at 500 °C and decomposition in oleic acid at 200 °C of the nano-sized compound 1. The obtained cadmium(II) oxide nano-particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

2.
Reactions of Cd(NO3)2?·?4H2O with NH4SCN, ppz (ppz?=?piperazine) and bpa (bpa?=?bis(4-pyridyl)ethane) in CH3OH afforded the cavity-containing rectangular grids {Cd(SCN)2(ppz)} n (1) and {Cd(NCS)2(bpa)} n (2). The ppz ligand in 1 is coordinated to the metal through both nitrogen atoms to form the 1-D zig-zag chain structure and distorted {CdN4S2} octahedral coordination geometry at each Cd center is completed by pairs of bidentate thiocyanato ligands. Complex 2 has the 2-D arrangement constructed through 1-D double μ(N,S) end-to-end bridging thiocyanato groups bridging Cd(II) chains interconnected through disordered bpa ligands.  相似文献   

3.
Three new coordination polymers constructed from asymmetric ligands were synthesized under hydrothermal conditions and characterized with single crystal X-ray analysis, infrared, and thermal gravimetric methods. Complex 1 exhibits a 3-D network constructed from rod-shaped secondary building units. Pyrimidine-4-carboxylic acid (bpa) was used as the starting material, but under hydrothermal conditions bpa formed 2,2′-pyrimidine-4,4′-dicarboxylic acid (bpda) in situ, which further connected with Pb. 3-D two-fold interpenetration of complex 2 was obtained by the similar method as described for 1, except that Cd(NO3)2 · 6H2O was used instead of Pb(NO3)2 · 6H2O to react with bpa. Complex 3 shows a three-connected 3-D network. Furthermore, the photoluminescence properties of 1 and 2 were studied.  相似文献   

4.
Two new interpenetrating networks, [Ni(2,2′-bpy)(5-npa)(bpe)0.5(H2O)] n (1) and [Ni(2,2′-bpy)(5-npa)(bpa)0.5(H2O)] n (2) (2,2′-bpy?=?2,2′-bipyridine, 5-npa?=?5-nitroisophthalato, bpe?=?1,2-bis(4-pyridyl)ethylene, bpa?=?1,2-bis(4-pyridyl)ethane), have been synthesized and characterized by elemental analyses, IR spectroscopy, thermogravimetric analyses, X-ray powder diffraction, and single-crystal X-ray diffraction. Complexes 1 and 2 have similar structures and show a threefold interpenetrating topology constructed by three 2-D wave-like networks. Secondary building unit (SBU), [Ni(2,2′-bpy)(5-npa)(H2O)] n , was used as starting material of the multistep reaction. Replacing one coordination bond of chelating carboxyl group of SBUs by bpe and bpa afford the two threefold interpenetrating complexes.  相似文献   

5.
A 2-D coordination polymer with mixed ligands, [Zn2(BDC)(4,4′-bipy) (HCOO)2] (1) (BDC, 1,4-benzenedicarboxylate; 4,4′-bipy, 4,4′-bipyridine), has been synthesized by solvothermal reaction. Compound 1 provides the first coordination polymer structure constructed by bridging BDC, 4,4′-bipy, and formate. Both BDC and 4,4′-bipy link zincs alternatively, resulting in a zigzag coordination chain; adjacent chains are further linked by formates to form an infinite extended 2-D folding screen layer. The synthesis mechanism and fluorescence property are discussed.  相似文献   

6.
By hydrothermal reactions of a newly designed ligand, 2-(p-tert-butylphenyl)-1H-imidazole-4,5-dicarboxylic acid (H3BuPhIDC) with Cd(II) or Zn(II), three metal-organic frameworks, [Cd(μ3-HBuPhIDC)(H2O)]·2H2O (1), [Cd(μ3-HBuPhIDC)(4,4′-bipy)0.5] (4,4′-bipy = 4,4′-bipyridine) (2), and [Zn23-HBuPhIDC)2(CH3OH)2] (3), have been obtained and characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction. In 1, small countless diamond grids form a mesh structure and then are bridged through μ3-HBuPhIDC2? linkers building a 3-D framework. Compared with 1, 4,4′-bipy participates in the construction of a 3-D structure of 2. Polymer 3 shows an interesting 3-D open architecture, which contains infinite 1-D octagonal channels built by left- and right-handed helical chains. Thermal and solid-state photoluminescence properties of the polymers have been investigated.  相似文献   

7.
A one-dimensional (1-D) organic–inorganic hybrid compound {(H3O)[CuI(4,4′-bipy)]3[SiW12O40]} · 1.5H2O (1) has been synthesized from hydrothermal reaction of Keggin polyoxometalate, cupric nitrate and 4,4′-bipyridine (4,4′-bipy). Single crystal X-ray diffraction shows 1-D zigzag chains built up of saturated Keggin polyoxoanions and infinite [CuI(4,4′-bipy)] n n + units. Zipper-like arrangement of adjacent zigzag chains by hydrogen-bonding interactions leads to a 2-D layer and π–π interactions of 4,4′-bipy ligands from adjacent layers further result in the 3-D structure of 1. All Cu atoms in 1 are three-coordinated with “T-type” geometries, indicating they are univalent in the resultant compound. This result has further been confirmed by the absence of signal in the EPR spectrum of 1.  相似文献   

8.
Three new complexes, {[Mn(dtb)(bpe)·2H2O]·H2O} n (1), {[Mn(dtb)(bpa)·2H2O]·H2O} n (2), and {[Mn(dtb)(phen)]} n (3) [H2dtb?=?5,5′-dithiobis(2-nitrobenzoic acid), bpe?=?1,2-bis(4-pyridyl)ethene, bpa?=?1,2-bi(4-pyridyl)ethane, phen?=?1,10-phenanthroline], have been synthesized under hydrothermal conditions with Mn(OAc)2·4H2O, dtb, and different N-donor ligands. X-ray structure analyses of 1 and 2 reveal analogous structures with 1D helical chains and 2D 44 chiral layers. The structure of 3 shows a 1D chain which is outwardly decorated with phen ligands. These neutral polymeric complexes exhibit structural diversity due to the different coordination modes of the flexible dtb ligand and the N-donor ligands. The thermogravimetric analyses and X-ray powder diffractions of 1–3 are also presented.  相似文献   

9.
Four new compounds, [Mn(HL)(phen)2(H2O)] (1), [Ni(HL)(phen)2(H2O)] (2), [Zn(HL)(4,4′-bipy)1.5(H2O)] n ?·?2nH2O (3) and [Zn2(HL)2(H2O)6] (4), have been synthesized from an asymmetric semi-rigid V-shaped multicarboxylate 4-(4-carboxy-phenoxy)-phthalic acid (H3L) with 1,10-phenanthroline (phen), or 4,4′-bipyridine (4,4′-bipy) as auxiliary ligands. Single-crystal X-ray diffraction analysis reveals that 1, 2 and 4 have 0-D structures with 3-D supramolecular frameworks formed by intermolecular hydrogen bonds. Compound 3 shows a 1-D infinite ribbon bridged by 4,4′-bipy, which further forms a 3-D supramolecular architecture by π–π stacking interactions and hydrogen bonds. Thermal stabilities of 14 and luminescence properties of 3 and 4 have also been investigated.  相似文献   

10.
Six transition metal coordination compounds with H2mand and different N-donor ligands, [Co(Hmand)2(2,2′-bipy)]·H2O (1), [Ni(Hmand)2(2,2′-bipy)]·H2O (2), [Ni(Hmand)2(bpe)] (3), [Zn(Hmand)2(2,4′-bipy)(H2O)]·2H2O (4), [Zn(Hmand)(bpe)(H2O)]n[(ClO4)]n·nH2O (5), and [Zn(Hmand)(4,4′-bipy)(H2O)]n[(ClO4)]n (6), were synthesized under different conditions (H2mand = (S)-(+)-mandelic acid, bpe = 1,2-di(4-pyridyl)ethane, 4,4′-bipy = 4,4′-bipyridine, 2,4′-bipy = 2,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine). Their structures were determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, infrared spectra, thermogravimetric analysis, powder X-ray diffraction, and circular dichroism. Compounds 1 and 2 are isostructural (0-D structures), which are extended to supramolecular 1-D chains by hydrogen bonding. Compound 3 exhibits 1-D straight chain structures, which are further linked via hydrogen bond interactions to generate a 3-D supramolecular architecture. Compound 4 displays a discrete molecular unit. Neighboring units are further linked by hydrogen bonds and ππ interactions to form a 3-D supramolecular architecture. Compound 5 displays a 2-D undulated network, further extended into a 3-D supramolecular architecture through hydrogen bond interactions. Compound 6 possesses a 2-D sheet structure. Auxiliary ligands and counteranions play an important role in the formation of final frameworks, and the hydrogen-bonding interactions and ππ stacking interactions contributed to the formation of the diverse supramolecular architectures. Compounds 1, 2, 4, 5, and 6 crystallize in chiral space groups, with the circular dichroism spectra exhibiting positive cotton effects. Furthermore, the luminescent properties of 46 have been examined in the solid state at room temperature, and the different crystal structures influence emission spectra significantly.  相似文献   

11.
Abstract

The zinc(II) and cadmium(II) complexes [Zn(4, 4′-bipy)(SCN)2] 1 and [Cd(4, 4′-bipy)-(SCN)2]n 2 have been synthesized and their crystal structures determined by X-ray crystallography. Complex 1 is monoclinic, space group C2/c, with a = 18.076(5), b = 5.190(1), c = 17.315(4)Å; β = 115.54(2), V = 1465.8(8)Å3, calculated density 1.530gcm?3, Z = 4. In this compound, the rod-like ligand 4, 4′-bipy bridges Zn(II) centres, and the NCS groups are terminally coordinated. (N-Zn-N) is 108.5°, resulting in the formation of a zigzag Zn-bipy-Zn chain. These chains are arranged in parallel fashion. The 4, 4′-bipy ligands of adjacent layers are separated by 3.95 (Å). Complex 2 is monoclinic, space group C2/c, a = 11.902(2), b = 11.745(2), c = 10.500(2)Å; β = 109.71(3), V = 1381.8(4)Å3 calculated density 1.849gcm?3, Z = 4. In this structure, the cadmium(II) ion is slightly distorted octahedral and the SCN groups act as doubly bridging ligands connecting cadmium atoms to form zigzag chains, separated by 4, 4′-bipy to create two-dimensional planes.  相似文献   

12.
A secondary building unit (SBU), [Ni(2,2′-bipy)(5-npa)(H2O)] n [where 2,2′-bipy = 2,2′-bipyridine, 5-npa = 5-nitroisophthalic dianion], was synthesized as starting material of a polystep reaction. A ladderlike complex (LLC) Ni(II) coordination polymer, {[Ni(2,2′-bipy)(5-npa)(4,4′bipy)0.5]·(H2O)} n , was constructed by polystep reaction using this SBU. In LLC, two SBUs were cross-linked by 4,4′-bipy [where 4,4′-bipy = 4,4′-bipyridine] forming a 1-D ladderlike structure. The magnetic properties of the LLC and SBU are discussed.  相似文献   

13.
A coordination polymer of CdII with a flexible ligand in [Cd(Hpda)2(4,4′-bipyridyl)2]?·?(H2O)2 (1) (H2pda?=?1,2-phenylenediacetic acid) has been synthesized by hydrothermal reactions and characterized by IR, TG, fluorescent spectrum, X-ray powder diffraction, and single-crystal X-ray diffraction techniques. The results show that 1 is monoclinic, with space group P2(1)/c, a?=?1.1704(7), b?=?1.7206(1), and c?=?2.2073(1) nm, β?=?120.881(2)°. In 1, the Cd(II) ions are linked by 4,4′-bipyridyl ligands to form 1-D chain with the arms of 1,2-pda ligands. These chains are imbedded into each other to form 2-D supramolecular sheets through hydrogen bonds. Adjacent 2-D sheets are assembled to 3-D network architecture through the crystallization of water molecules. Photoluminescence properties of 1 were investigated in the solid state at room temperature. The spectrum shows intense photoluminescence at 300?nm (λex?=?275?nm).  相似文献   

14.
Two new organic-inorganic hybrids, (4,4′-bipy)[CuI(2,2′-bipy)2]2[W6O19] (2,2′-bipy = 2,2′-bipyrine, 4,4′-bipy = 4,4′-bipyrine) (1) and (C6H5NO2)4{MnIII(H2O)}[AsIIIW9O33]2{W(OH)}- {W(H2O)}?~18H2O (2), have been synthesized and characterized by elemental analysis, IR, TG, UV–Vis, XRPD, XPS, electrochemical analysis and single-crystal X-ray diffraction. Single crystal X-ray diffraction analysis shows that 1 is a new Lindqvist-type polyoxoanion bisupported by copper(I) coordination cations and 2,2′-bipy ligands and exhibits a three-dimensional (3-D) supermolecular framework by aromatic π–π stacking interactions. Compound 2 is constructed from a manganese(III)-substituted sandwich-type polyoxoanion based on [α-AsW9O33]9? units and dissociative, protonated pyridine-4-carboxylic acid molecules, which act as the charge compensation cations. The cyclic voltammogram of 2 shows an irreversible redox process for Mn3+ ions.  相似文献   

15.
Two organic–inorganic hybrid polyoxometalates {[V2W4O19{Cu(2,2′-bipy)2}2] · (4,4′-bipy)} n (1) and [Co(2,2′-bipy)3][W6O19] · H2O (2) (2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), constructed by Lindqvist polyanions and transition metal coordination cations, have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, UV spectra, thermogravimetric (TG) analyses, X-ray photoelectron spectroscopy (XPS), and single- crystal X-ray diffraction. Compound 1 is a neutral molecule and consists of a di-VV substituted Lindqvist-type polyanion [V2W4O19]4?, two supporting copper cations [Cu(2,2′-bipy)2]2+ and one free 4,4′-bipy. Neutral molecules of 1 are extended to a 2-D grid-like network by ππ stacking interactions between pyridine groups. The molecular structure of 2 contains one [W6O19]2? cluster polyanion and a [Co(2,2′-bipy)3]2+. Inductively coupled plasma (ICP) analysis and XPS spectrum of 1 prove the presence of VV. TG curves of 1 and 2 indicate two weight loss steps.  相似文献   

16.
{[CdCl(2,2′-bipy)2(H2O)]+·[Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?·3H2O} (1) and {[Cd(phen)3]2+·2[Cd(3-O?-2,7-NDS)(phen)2]?·8.5H2O} (2) (3-OH-2,7-NDS?=?3-hydroxy-2,7-naphthalenedisulfonate, phen?=?1,10-phenanthroline, and 2,2′-bipy?=?2,2′-bipydine) were prepared and characterized by X-ray single-crystal diffraction. Compound 1 contains a discrete coordination cation [CdCl(2,2′-bipy)2(H2O)]+ and a coordination anion [Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?; 2 contains a discrete coordination cation [Cd(phen)3]2+ and two coordination anions [Cd(3-O?-2,7-NDS)(phen)2]?. There are numerous weak interactions among the coordination cation, coordination anion, and free water molecules, such as O–H?···?O hydrogen bonds, π?···?π stacking, and Cl??···?π interactions in 1 and π?···?π stacking and C–H?···?π interactions in 2. The cations and anions as building blocks are connected to construct different 3-D supramolecular architectures via weak intermolecular interactions. Particularly, the capsule structure of 1 was observed.  相似文献   

17.
This work describes the synthesis, thermal, spectroscopic properties (Raman and infrared), and crystal structures of five new supramolecular compounds [Mn(bpa)(H2O)4]B2?·?4H2O (1), [Fe(bpa)(H2O)4]B2?·?4H2O (2), [Co(bpa)(H2O)4]B2?·?4H2O (3), [Zn(bpa)(H2O)4]B2?·?4H2O (4), and Co2mal2bpa?·?2H2O (5), where B is the anion of barbituric acid, bpa is 1,2-bis(4-pyridyl)-ethane, and mal is malonate ion. Compounds 14 are isostructural, showing covalent linear 1-D [M(bpa)(H2O)4]2+ chains, which interact by hydrogen-bonding and π-stacking interactions with barbiturate and crystallization water molecules resulting in a 3-D arrangement, belonging to Pbcn space group. Compound 5 has been obtained from the opening of the barbituric acid ring, with the formation of malonate, coordinated simultaneously to three cobalts in a 1-D chain along the c-axis, whereas bpa ligand gives rise to another 1-D chain along the a- and b-axes, resulting in a 3-D coordination polymer containing cavities. The vibrational spectra of 14 are also very similar; Raman spectra display two intense bands related to bpa at 1616 and 1020?cm?1, assigned to the (ν CC/ν CN) and ring stretching modes, respectively. The barbiturate is also confirmed by a band at 684?cm?1; the interesting point to be emphasized is this vibrational mode is not observed for 5, corroborating the absence of this building block in the structure.  相似文献   

18.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

19.
Three new coordination polymers, {[Cu(trza)(2,2′-bipy)(H2O)]?·?(ClO4)} n (1), {[Cu(trza)(2,2′-bipy)(H2O)]?·?(BF4)} n (2), and {[Cu(trza)(4,4′-bipy)]?·?(H2O)?·?(ClO4)} n (3) (Htrza?=?2-(1H-1,2,4-triazole)-1-acetic acid), have been synthesized and characterized by single-crystal X-ray diffraction analysis. Both 1 and 2 exhibit 1-D chain structure while 3 displays 2-D layer structure. The catalytic activities of 1 and 3 in the green oxidative coupling of 2,6-dimethylphenol have been investigated.  相似文献   

20.
A copper(II) complex [Cu(im2-py)(4,4′-bipy)(NO3)](NO3)·1.5H2O (im2-py?=?2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl; 4,4′-bipy?=?4,4′-bipyridyl) has been synthesized by reaction of Cu(NO3)·3H2O with im2py and 4,4-bipyridyl in methanol solution. Its crystal structure has been determined by X-ray diffraction. The structure shows that each copper ion is coordinated by a bidentate imino nitroxide radical, two 4,4′-bipyridyl ligands and a nitrate group to form a distorted square pyramidal environment. The crystal structure consists of chains of copper ions linked by 4,4′-bipyridyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号