首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The diorganotin(IV) complexes, [R2Sn(Rd)(μ-OH)]2 (R?=?Me (1), PhCH2 (2), n-Bu (3), Ph (4); HRd?=?rhodanine), have been synthesized and characterized by IR and multinuclear (1H, 13C, 119Sn) NMR spectroscopy. The structures of complexes 2 and 3 have been determined by single-crystal X-ray diffraction. Both crystal structures of 2 and 3 show the presence of asymmetrically bridging hydroxy groups leading to an Sn2O2 unit. Each atom in complex 1 is also coordinated by an N atom of ligand and two C atoms of the alkyl groups, so the Sn environment is based on a trigonal bipyramid. While in complex 2, a weak intermolecular Sn–O interaction has also been found between the two adjacent molecules, so the geometry of the Sn atom can be best described as six-coordinate octahedral. The salient feature of the supramolecular structure of complex 3 is that of a 1D polymer, in which the discrete molecules are connected through weak intermolecular Sn?···?O interactions.  相似文献   

2.
Diorganotin (IV) complexes (1, 2, 3, 4), of the general formula R2Sn(L)m have been synthesized where R = n-But, n-Oct; m = 2 when L1 = N-[(Z)-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carboxamide and m = 1 when L2 = [3,4-bis-{[(E)-(2-hydroxy-3-methoxyphenyl) methylidene]amino}phenyl](phenyl)meth-anone. The prepared Schiff bases and diorganotin complexes have been characterized by elemental analysis, FTIR, and NMR (1H, 13C, and 119Sn) spectroscopic studies. The molecular geometry, thermochemical values, and vibrational frequencies of two complexes in the ground state were calculated using the B3LYP density functional method with LANL2DZ basis set for Sn using Gaussian 09 software. A good correlation of theoretical and experimental results shows that in both the complexes the geometry around the central tin atom is tetrahedral. The studies were further extended to test and compare the in vitro cytotoxic activity of ligands and complexes against MCF-7 cell line by MTT assay. The IC50 values show that cytotoxic activity of ligands increased on complexation with tin metal.  相似文献   

3.
The Schiff bases H2La, H2Lb, and H2Lc have been prepared from the reaction of 2-amino-4-chlorophenol with acetylacetone, benzoylacetone, and dibenzoylmethane, respectively. Organotin(IV) complexes [SnPh2(La)] (1), [SnPh2(Lb)] (2), [SnPh2(Lc)] (3), and [SnMe2(Lc)] (4) have been synthesized from the reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. Spectroscopic data suggest the Schiff bases are completely deprotonated and coordinated tridentate to tin via imine nitrogen and phenolic and enolic oxygen atoms; the coordination number of tin is five. Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activities of the Schiff bases and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La, H2Lc, and all complexes exhibited good activities and have potential as drugs.  相似文献   

4.
Eight diorganotin(IV)-oxo-carboxylates {[R2Sn(O(O)CR′)]2O}2?·?Y (R′?=?C4H3N2Y?= H2OR?=?nBu 1, Y?=?0 R?=?Me 2, Y?=?0 R?=?C6H5 3, Y?=?0 R?=?C6H5CH2 4; R′?=?CH2SC4H3N2-2,6Y?=?0 R?=?nBu 5, Y?=?CH2Cl2R?=?Me 6, Y?=?0 R?=?C6H5 7, Y?=?0 R?= C6H5CH2 8) have been prepared in 1?:?1 molar ratios by reactions of diorganotin(IV) oxide with 2-pyrazinecarboxylic acid or (2-pyrimidylthio)acetic acid, respectively. All the complexes are characterized by elemental analysis, IR, 1H NMR and 13C NMR spectra. Except for 2, 4 and 7, the complexes are also characterized by X-ray crystallography diffraction analyses, which reveal that the complexes adopt the familiar dicarboxylato tetraorganodistannoxane structural mode. Among them, the evident difference is that weak intramolecular interactions between Sn and N atoms are recognized in complexes 1 and 3. However, for complex 5 two different coordination modes are found in the same lattice.  相似文献   

5.
This article describes the synthesis and characterization of several new diorganotin(IV) tetraazamacrocyclic complexes. The template condensation of anthranilic acid and diethylenetriamine with 1,2-dibromoethane or 1,3-dibromopropane in the presence of diorganotin(IV) dichlorides yielded macrocyclic complexes. The geometry and the mode of bonding of the resulting complexes were inferred from elemental analysis, UV-Vis, IR, Direct Analysis in Real Time-mass, (1H, 13C and 119Sn) NMR, and 119mSn Mössbauer spectral studies. These studies suggested that the macrocyclic ligands are tetradentate, coordinating through four nitrogens giving a skew-trapezoidal bipyramidal environment around tin in the [R2Sn(L-1)/(L-2)] (R = Me, n-Bu and Ph; H2L-1/H2L-2 = macrocyclic ligands) complexes. Thermal studies of the complexes were carried out in the temperature range 25–1000°C using thermogravimetry, derivative thermogravimetry, and differential thermal analysis techniques which provided a simple route to nanosized semi conducting SnO2 grains, identified by X-ray diffraction analysis. The particle size of the residue, obtained by pyrolysis of 2, 3, 4 and 5, determined by X-ray line broadening and transmission electron microscope were in the range ~38–48 nm and ~3–20 nm, respectively. The surface morphology of these residues was determined by scanning electron microscopy.  相似文献   

6.
The mononuclear nickel(II) complex [Ni(H2slox)(H2O)3] (1) and polymeric dinuclear complexes [Ni2(slox)(A4)] {A = H2O (2), py (3), 2-pic (4), 3-pic (5) and 4-pic (6)} and the discrete binuclear complexes [Ni2(slox)(NN)3] {NN = bpy (7) and phen (8)} have been synthesized from disalicylaldehyde oxaloyldihydrazone (H4slox) in methanol. All of the complexes are nonelectrolytes. Complexes 1, 7, and 8 are paramagnetic while binuclear 26 possess anomalously low μ eff value, indicating considerable metal–metal interaction. Discrete binuclear 7 and 8 have no interaction between the two nickel(II) ions. The anomalously low magnetic moment values in 26 are explained as metal–metal interaction via phenoxide bridge. Such metal–metal interactions are less in 7 and 8 due to coordination of bipyridine and phenanthroline molecules which do not allow phenoxide bridging. The dihydrazone coordinates to the metal center as a dibasic tridentate ligand in keto-enol form in staggered configuration in 1, while in the remaining complexes the dihydrazone is tetrabasic hexadentate in enol form in anticis configuration. The metal center has a tetragonally distorted octahedral stereochemistry.  相似文献   

7.
Six novel diorganotin(IV) complexes have been synthesized in good yields by the reaction of R2SnCl2 (R= methyl, phenyl) with the Schiff base derived from salicylaldehyde and substituted thiosemicarbazide. The complexes were characterized by elemental analysis, IR, 1H NMR and MS spectra. The structure of 2f was confirmed by single crystal X‐ray diffraction. The crystal of 2f is triclinic, space group P‐1 with a = 0.84996(12), b = 1.1204(2), c = 1.27597(12) nm, β = 81.908(9)°, V=1.0904(2) nm3, Z = 2, Dc= 1.551 g/cm3. The final discrepancy factors are R = 0.0211 and Rw = 0.0536 for 3710 independent reflections. Tests of antitumor activities in vitro showed that the obtained complexes had relative inhibition interaction to the KB, HCT‐8 and BEL‐7402 tumor cell lines.  相似文献   

8.
Abstract

Six organotin(IV) complexes of type Me2SnL2, Bu2SnL2, and Ph3SnL [where L = indole-3-butyric acid (1, 2 and 3) or indole-3-propionic acid (4, 5 and 6)] have been synthesized by the reactions of the corresponding diorganotin(IV) oxide and triphenyltin(IV) hydroxide with respective indole-3-butyric acid (IBH) or indole-3-propionic acid (IPH) in the desired molar ratios of 1:2/1:1. All of the compounds have been characterized by elemental analysis, IR, 1H NMR, 13C NMR, and 119Sn NMR spectroscopy. Thermal studies of all synthesized complexes have been carried out using thermogravimetry (TG) technique under a nitrogen atmosphere. The thermal decompositions for compounds Me2SnL2 and Bu2SnL2 occurred in two steps, whereas in compounds Ph3SnL, it exhibited as three steps decomposition and resulted into the formation of pure SnO2. The complexes were also screened against three gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus) and three gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes) bacteria using minimum inhibition concentration (MIC) method, and all of these complexes showed significant antibacterial activity.

[Supplementary materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental files: Additional text, tables, and figures.]  相似文献   

9.
Two octacyanometallate-based NiII–MIV [M?=?Mo(1), W(2)] bimetallic assemblies chelated with tetradentate macrocyclic ligands have been synthesized by slow diffusion and characterized structurally. In both complexes, M and Ni centers acting as linker and connector, respectively, are connected by M–CN–Ni–NC–M linkages to form a 3-D diamond-type topological network. Magnetic behaviors of both complexes show a very weak antiferromagnetic interaction between NiII ions mediated by the diamagnetic [M(CN)8]4? bridges.  相似文献   

10.
A series of diorganotin bisxanthate compounds, [R2Sn(S2COR′)2] (R=Me, Et, nBu, tBu, and Ph; R′?Et, iPr and cHex) have been prepared and characterized by spectroscopic methods (IR, NMR and FAB MS). The xanthate ligands chelate the R2Sn moieties forming disparate Sn–S bonds leading to skew-trapezoidal biypramidal tin atom geometries. The crystal structure of a representative compound, [Ph2Sn(S2COEt)2], confirms the spectroscopic results and shows the tin atom to be coordinated by two asymmetrically chelating xanthate ligands [Sn–S(1) 2.486(1), Sn–S(2) 3.052(1) Å and Sn–S(3) 2.484(1), Sn–S(4) 3.220(1) Å] with the two phenyl substituents lying over the weaker Sn–S interactions so that C–Sn–C is 126.5(1)°. Crystal data for [Ph2Sn(S2COEt)2]: monoclinic space group P21/n: a=9.645(1), b=23.723(3), c=9.798(2) Å, ß=100.23(1)°, V=2206.2 Å3, Z=4; 2708 data refined to final R 0.023. A selection of these compounds has been evaluated for activity against the L1210 mouse leukaemia cell line.  相似文献   

11.
The electrochemical synthesis of tin(II) complexes of catechols, Sn(O2Ar) (1a9a), have carried out using tin metal as a sacrificial anode in acetonitrile, in the presence of catechol derivatives. The cyclic voltammetric characteristics of the synthesized complexes Sn(O2Ar) (1a9a) have been studied at glassy carbon electrode in dichloromethane. Anodic oxidation of Sn(O2Ar) produces a single wave which shows irreversibility. Also, the electronic effects of ligands on the redox potential of complexes 1a9a have been investigated. The synthesis of Sn(O2Ar) species in high yields and purity has been successfully performed in an undivided cell using constant current conditions.  相似文献   

12.
A series of new imidazolium salts (1–4) as N-heterocyclic carbene (NHC) precursors have been synthesized by successive N-alkylation method. Reactions of these salts with Ag2O by varying the metal to salt ratio forms a series of new Ag(I)–NHC complexes (5–8). All compounds were characterized by physico-chemical and spectroscopic techniques. The molecular structures of 1 and 5 were characterized by single-crystal X-ray diffraction analysis. A comparative investigation of the bacterial growth inhibition potential of the salts and respective complexes indicates that 5–8 displayed good antibacterial activities on Staphylococcus aureus (ATCC 12600) and Escherichia coli (ATCC 11303) compared with the salts. Furthermore, it was observed that with increase in chain length at N-positions, the antibacterial activities also increased. Nuclease activity of the reported salts and Ag(I)–NHC complexes with nucleic acids (DNA and RNA) were also studied using agarose gel electrophoresis; the results show that the compounds do not have any apparent interaction with nucleic acids in the absence of hydrogen peroxide (H2O2). However, 5 and 8 were efficient in promoting the cleavage of nucleic acids in the presence of H2O2.  相似文献   

13.
Two complexes, [Cd(ip–OH)(H2biim)(H2O)][Cd(ip–OH)(H2biim)(H2O)3]·8(H2O) (1) and [Cd(Himdc)(H2biim)] n (2) (H2ip–OH?=?5-hydroxylisophthalic acid, H2biim?=?2,2’-biimidazolate, H3imdc?=?4,5-imidazoledicarboxylic acid), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. 1 is a 3-D supramolecular network constructed by 0-D and 1-D motifs through hydrogen bonds and π?π interactions. Complex 2 is a 1-D zigzag polymeric coordination chain and the chains are connected to form a 3-D supramolecular network by hydrogen bonds. The complexes were characterized by elemental and thermogravimetric analyses. Fluorescence was also investigated.  相似文献   

14.
15.
Extended X-ray absorption fine structure (EXAFS) measurements have been recorded at the K-edge of copper in binuclear monohydroxo-bridged copper(II) complexes [(bpy)2Cu–OH–Cu(bpy)2](ClO4)3 (1) and [(phen)2Cu–OH–Cu(phen)2](C1O4)3 (2) and dihydroxo-bridged copper(II) complexes [Cu2(μ–OH)2(bipy)2]SO4?·?5H2O (3) and [Cu2(μ–OH)2(phen)2]SO4?·?5H2O (4) (where bpy and phen are 2,2′-bipyridine and 1,10-phenanthroline, respectively) using the dispersive EXAFS beamline at 2?GeV Indus-2 synchrotron source at RRCAT, Indore, India. The EXAFS data have been analyzed using the software, Athena and Artemis. Theoretical models have been generated for 1 and 3 using available crystallographic data and then fitted to their experimental EXAFS data to obtain the structural parameters, which include bond-lengths, coordination numbers, and thermal disorders. The results obtained have been found to be comparable with their crystallographic results. As the crystallographic data for 2 and 4 are not available in the literature, we have determined their structural parameters by fitting their experimental EXAFS data with the same theoretical models which were generated for their corresponding analogous complexes 1 and 3, respectively. The structural parameters thus determined have been reported. Also, on the basis of the analysis of the EXAFS data, these four complexes have been shown to be binuclear, i.e. they contain two metals. Further, the values of the chemical shifts suggest that copper is in +2 oxidation state in these complexes.  相似文献   

16.
Series of diorganotin(IV) complexes of 4-X-benzohydroxamic acid [X = NH2 (HL1), NO2 (HL2) or F (HL3)] formulated as [R2SnL2] and [R2Sn(L)]2O (R = Me, Et, nBu or Ph) have been prepared and characterized by FT-IR, 1H, 13C and 119Sn NMR spectroscopies, elemental analyses, FAB+-MS and melting point determination. They are stable in air, soluble in alcohols and in hydroalcoholic solution and, in some cases, in water. Their in vitro antitumor activity against a series of human tumor cell lines was tested and, in a few of them, is identical to, or even higher than, that of cisplatin. For the mononuclear dialkyltin compounds, the activity generally increases with the length of the carbon chain of the alkyl ligand, being higher for the complexes with benzohydroxamato ligands bearing an electron-acceptor substituent (X = NO2 or F). No structure-activity relationship based on the Hammett’s σp constant, or related ones, has been recognized.  相似文献   

17.
Schiff bases o-vanilidene-1-aminobenzene (HL1) and o-vanilidene-2-methyl-1-aminobenzene (HL2) lead to the formation of mono- and bis-[(Cl)Zn(L1)] (1), [(Cl)Zn(L2)] (2), [(Cl)Hg(L1)] (3), [(Cl)Hg(L2)] (4), [Zn(L1)2] (5), [Zn(L2)2] (6), [Hg(L1)2] (7), and [Hg(L2)2] (8) complexes by reactions of zinc(II) and mercury(II) chlorides in different mole ratio(s). Complexes 18 have been characterized by elemental analyses (Zn, Hg, C, H, Cl, and N), melting point and spectral (IR, 1H-NMR), PXRD, molar conductivity measurement, and TGA. Conductivity measurements suggest non-electrolytes. Structural compositions have been assigned by mass spectral studies. Four-coordinate geometry may be assigned to these complexes tentatively. Structural study reveals that in 14 two metal centers are held together by two bridged (μ2-Cl) chlorides, whereas 58 contain two bidentate Schiff-base ligands around one metal-producing monomers.  相似文献   

18.
In this study, five novel Co(II) complexes of 2-(1H-benzimidazol-2-yl)-phenol derivatives (HLx: x = 1–5) have been synthesized and characterized. The general formula for complexes C1 and C2 is K2[Co(HL1,2)2Cl2]·H2O, for complex C3 K2[Co(HL3)2Cl2], and for complexes C4 and C5 [Co(HL4,5)2]. In all complexes, the ligands are coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were characterized by FT-IR, UV–vis, 1H, 13C NMR spectroscopies, ICP and elemental analysis (C, H, and N). The purity of these compounds was ascertained by melting point (m.p.) and TLC. Geometry optimization of the studied complexes was done by Gaussian09 software at B3LYP/TZVP level of theory and satisfactory theoretical–experimental agreement was achieved for NMR and IR spectra of the compounds. Based on the combined experimental and theoretical studies, six-coordinate octahedral structures have been proposed for complexes C1C3, while complexes C4 and C5 had distorted tetrahedral geometry. All complexes were activated with diethylaluminum chloride (Et2AlCl), cobalt(II) complexes containing bulky methyl groups in the aryl moiety show high catalytic activities (1774 kg?mol?1(Co)?h?1) for ethylene oligomerization. The oligomers obtained from the cobalt complexes exhibit good selectivity for linear 1-butene and 1-hexene. Results revealed that both the steric and electronic effects of ligands strongly affect the catalytic activities and the properties of the catalytic products.  相似文献   

19.
New palladium complexes were efficiently synthesized from the reaction of benzimidazolium salts 2a–e, potassium carbonate (K2CO3) and palladium chloride (PdCl2) in pyridine (for 3a–e). The catalytic activity of these complexes in a catalytic system including palladium complexes and K2CO3 in DMF-H2O was evaluated in Suzuki–Miyaura cross-coupling reactions of aryl bromides and chlorides with phenylboronic acid. Our novel complexes show excellent catalytic activities with high turnover numbers (TON) and high turnover frequencies (TOF) (e.g. for the Suzuki–Miyaura reaction: TON up to 370 and TOF up to 123.3?h?1). Both benzimidazolium salts 2a–e and complexes 3 have been characterized using spectroscopic data and elemental analysis. The antimicrobial activity of the N-heterocyclic carbene palladium complexes 3a–e varies with the nature of the ligands. Also, the IC50 values of both, complexes (3a–e) and benzimidazoles 2a–e, have been determined. In addition, the new palladium complexes were screened for their antitumor activity. Complexes 3e and 3d exhibited the highest antitumor effect with IC50 values 6.85?μg/mL against MCF-7 and 10.75?μg/mL against T47D, respectively.  相似文献   

20.
Three transition metal and six organotin(IV) complexes have been synthesized by treating potassium o-methyl carbonodithioate with ZnCl2/CdCl2/HgCl2 and R2SnCl2/R3SnCl under stirring. The complexes were characterized by IR, 1H, and 13C NMR spectroscopies. IR results show that the ligand is bidentate in 1–3 while monodentate in 4–9, which is also confirmed by semi-empirical study. NMR data reveal four-coordinate geometry in solution. HOMO–LUMO study shows that 7 and 9 are thermodynamically unstable. The enzyme inhibition study shows that 1 is a potent inhibitor of ALP, EC 3.1.3.1, resulting in very slow rate of formation and breakdown of enzyme–substrate complex. UV/visible spectroscopy was used to assess the mode of interaction and binding of the complexes with DNA which shows that 9 exhibits higher binding constant when compared to 6. In protein kinase inhibition assay, 1 was active, while antifungal activity shows that organotin(IV) complexes are more active than transition metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号