首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two pairs of isostructural transition metal coordination polymers, {[Co(L)(H2O)]n} (1) and {[Zn(L)(H2O)]n} (3), {[Co(L)(4,4′-bipy)(H2O)]·H2O}n (2) and {[Zn(L)(4,4′-bipy)(H2O)]·H2O}n (4) (H2L = N-pyrazinesulfonyl-glycine acid and 4,4′-bipy = 4,4′-bipyridine), have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental and thermogravimetric analyses. The structures show that 1 and 3 display 2-D polymeric grid frameworks with a 3-connected (4, 82) topology. 2 and 4 also exhibit a 2-D polymeric grid structure, but are constructed by a 4-connected (4, 4) topology. The adjacent 2-D polymeric grid frameworks for 1–4 are further linked by hydrogen bonding O–H?O interactions to form 3-D supramolecular interweaved orderly networks. The fluorescent properties of 3 and 4 were investigated in the solid state.  相似文献   

2.
Six transition metal coordination compounds with H2mand and different N-donor ligands, [Co(Hmand)2(2,2′-bipy)]·H2O (1), [Ni(Hmand)2(2,2′-bipy)]·H2O (2), [Ni(Hmand)2(bpe)] (3), [Zn(Hmand)2(2,4′-bipy)(H2O)]·2H2O (4), [Zn(Hmand)(bpe)(H2O)]n[(ClO4)]n·nH2O (5), and [Zn(Hmand)(4,4′-bipy)(H2O)]n[(ClO4)]n (6), were synthesized under different conditions (H2mand = (S)-(+)-mandelic acid, bpe = 1,2-di(4-pyridyl)ethane, 4,4′-bipy = 4,4′-bipyridine, 2,4′-bipy = 2,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine). Their structures were determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, infrared spectra, thermogravimetric analysis, powder X-ray diffraction, and circular dichroism. Compounds 1 and 2 are isostructural (0-D structures), which are extended to supramolecular 1-D chains by hydrogen bonding. Compound 3 exhibits 1-D straight chain structures, which are further linked via hydrogen bond interactions to generate a 3-D supramolecular architecture. Compound 4 displays a discrete molecular unit. Neighboring units are further linked by hydrogen bonds and ππ interactions to form a 3-D supramolecular architecture. Compound 5 displays a 2-D undulated network, further extended into a 3-D supramolecular architecture through hydrogen bond interactions. Compound 6 possesses a 2-D sheet structure. Auxiliary ligands and counteranions play an important role in the formation of final frameworks, and the hydrogen-bonding interactions and ππ stacking interactions contributed to the formation of the diverse supramolecular architectures. Compounds 1, 2, 4, 5, and 6 crystallize in chiral space groups, with the circular dichroism spectra exhibiting positive cotton effects. Furthermore, the luminescent properties of 46 have been examined in the solid state at room temperature, and the different crystal structures influence emission spectra significantly.  相似文献   

3.
A secondary building unit (SBU), [Ni(2,2′-bipy)(5-npa)(H2O)] n [where 2,2′-bipy = 2,2′-bipyridine, 5-npa = 5-nitroisophthalic dianion], was synthesized as starting material of a polystep reaction. A ladderlike complex (LLC) Ni(II) coordination polymer, {[Ni(2,2′-bipy)(5-npa)(4,4′bipy)0.5]·(H2O)} n , was constructed by polystep reaction using this SBU. In LLC, two SBUs were cross-linked by 4,4′-bipy [where 4,4′-bipy = 4,4′-bipyridine] forming a 1-D ladderlike structure. The magnetic properties of the LLC and SBU are discussed.  相似文献   

4.
Two rare earth carboxylic acid complexes, [Sm(MeBA)3(2,2′-bipy)]2·2(2,2′-bipy) (MeBA = 3-methylbenzoic acid; 2,2′-bipy = 2,2′-bipyridine) (1) and [Pr(MeBA)3(H2O)2]n?n(4,4′-bipy) (4,4′-bipy = 4,4′-bipyridine) (2), have been synthesized under hydrothermal conditions and structurally determined by single-crystal X-ray diffraction. Compound 1 is a dimer and further assembles into an infinite chain, two-dimensional net and three-dimensional supramolecular structure via weak π–π and C–H···π interactions. Some 2,2′-bipy coordinates with Sm and some exist by non-covalent C–H···π interactions. Compound 2 is a 1D infinite chain structure, with adjacent 1D chains connected into a 2D layer structure by O–H···N hydrogen bonds. The two complexes were characterized by elemental analyses, IR, photoluminescence, and TGA. In order to illustrate subtle structural characteristics of intermolecular interactions and magnetic sensitivity of the complex, 2D-IR correlation spectra (2D-IR COS) under magnetic perturbation for 1 were performed.  相似文献   

5.
Three new coordination polymers, {[Cu(trza)(2,2′-bipy)(H2O)]?·?(ClO4)} n (1), {[Cu(trza)(2,2′-bipy)(H2O)]?·?(BF4)} n (2), and {[Cu(trza)(4,4′-bipy)]?·?(H2O)?·?(ClO4)} n (3) (Htrza?=?2-(1H-1,2,4-triazole)-1-acetic acid), have been synthesized and characterized by single-crystal X-ray diffraction analysis. Both 1 and 2 exhibit 1-D chain structure while 3 displays 2-D layer structure. The catalytic activities of 1 and 3 in the green oxidative coupling of 2,6-dimethylphenol have been investigated.  相似文献   

6.
Two lanthanide coordination polymers, [Tm2·(5-IPA)4·(2,2′-Hbipy)2]·3H2O (1, 5-H2IPA?=?5-hydroxyisophthalic acid, 2,2′-bipy?=?2,2′-bipyridine) and [Er·(5-HIPA)3·(4,4′-bipy)3·(H2O)2]·3H2O (2, 4,4′-bipy?=?4,4′-bipyridine), have formed by hydrothermal synthesis. Complex 1 exhibits a 2-D coordination network containing parallelepiped-shaped voids occupied by guest 2′2-bipy molecules. Complex 2 possesses a 1-D linear chain structure. The 1-D chains are linked by 4,4′-bipy molecules to form a 3-D supramolecular framework. IR spectroscopy, elemental analysis, and thermogravimetric analysis were also investigated.  相似文献   

7.
Five metal imidazole dicarboxylate-based compounds, {[Zn3(MIDC)2(4,4′-bipy)3](4,4′-bipy)·8H2O}n (1), {[Co3(MIDC)2(4,4′-bipy)3](4,4′-bipy)·6H2O}n (2), {[Co3(MIDC)2(py)2(H2O)2]}n (3), {[Mn6(MIDC)4(py)5(H2O)4]}n (4), and {[Mn3(MIDC)2(Phen)3(H2O)2]}n (5) (H3MIDC = 2-methyl-1H-imidazole-4,5-dicarboxylic acid; 4,4′-bipy = 4,4′-bipyridine; py = pyridine; Phen = 1,10-phenanthroline), have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. We control the coordination modes of H3MIDC via hydrazine and obtained a series of coordination compounds containing honeycomb-like [M3(MIDC)2]n layers. We also investigated the effects of different neutral terminal or bridging ligands on [M3(MIDC)2]n layers. Coplanar [M3(MIDC)2]n layers and 4,4-bipy were used to construct 3-D frameworks of 1 and 2. Puckered [M3(MIDC)2]n layers were found in 3–5; 4 is the first [M3(L)2]n layer structure with two crests and troughs during each period (L = imidazole-4,5-dicarboxylic acid or its analog). Compound 5 is the first puckered [M3(L)2]n layer structure decorated by chelating neutral ligands. Compound 1 exhibits weak blue photoluminescence in the solid state at room temperature. Variable-temperature magnetic susceptibility measurements of 2–5 indicate strong antiferromagnetic interactions.  相似文献   

8.
A series of new oxo-vanadium(IV) complexes, [VOCl0.69(OH)0.31 (2,2′-bipy)2]Cl·2H2O (1, 2,2′-bipy?=?2,2′-bipyridine) [(VO)2Cl4(4,4'-bipy)3 (H2O)2] (2, 4,4'-bipy?=?4,4'-bipyridine), [VO(ida)(H2O)]n (3, H2ida?=?iminodiacetic acid), and [(VO)2(oa)4]n·4n(H3O)·n(H2O) (4, H2oa?=?oxalic acid), have been synthesized and structurally characterized. 1 contains a [VOCl0.69(OH)0.31(2,2′-bipy)2]+ cation, Cl anion and two free H2O molecules. 2 exhibits a binuclear centrosymmetric moiety built up from two [VOCl2(4,4'-bipy)(H2O)] units and one bridging 4,4'-bipy ligand, which provides a rare example of a 4,4'-bipy molecule acting as monodentate ligand. 3 displays a neutral chain [VO(ida)(H2O)]n constructed by the linkages of [VO(H2O)]2+ units and ida2? bridging ligands, while 4 offers the only example of three kinds of oa2- ligands coexisting within the same anionic chain [(VO)2(oa)44-]n. Their spectroscopic properties were investigated, and the magnetic susceptibility of 4 shows antiferromagnetic behavior.  相似文献   

9.
A Cd(II)-MOF, {[Cd(L)(4,4′-bipy)]·H2O·DMF}n (1) (L = nicotinic acid (2,4-dihydroxybenzylidene)-hydrazide and 4,4′-bipy = 4,4′-bipyridine), has been synthesized and characterized by microanalyses, FTIR, TGA, and single-crystal X-ray diffraction. Additionally, powder X-ray diffraction was performed to check the phase purity of the synthesized compound. Single-crystal X-ray diffraction reveals that 1 has a 2D grid network. Photoluminescent sensing of nitrobenzene, Fe(III) and CrO42? ions indicates that 1 could be a candidate for developing selective luminescent sensors for these species. Theoretical calculations have been performed to gain insight into the possible mechanism of quenching effect in emission on addition of nitrobenzene in 1 which supports the mechanism operating through ground state charge transfer between 1 and nitrobenzene.  相似文献   

10.
Using 4-methylbenzenethiolates of Zn or Cd as precursors and 4,4′-bipyridine (4,4′-bpy) as bridges, we have synthesized three new Zn(II)/Cd(II) coordination polymers, {[Cd(4,4′-bpy)2(NCS)2] · 2(SC6H4CH3-4)2} n (1), {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · DMF} n (2) and {[Zn(4,4′-bpy)(SC6H4CH3-4)2] · H2O · 0.5CH3OH} n (3). Compound 1 is a 2-D sheet-like square polymer in which four 4,4′-bpy ligands and two isothiocyanate ligands complete the octahedral Cd(II) coordination sphere. Compounds 2 and 3 have similar coordination around Zn(II), but have different polymer structures. In 2, Zn(II) centers are linked via a bidentate 4,4′-bipyridine to form 1-D twisted arched chains, which is a new structural type for Zn(II). Compound 3 has 1-D zigzag chains. The 2-D sheets in 1 and 1-D chains in 2 and 3 are assembled via intermolecular C–H ··· π and C–H ··· S interactions into 3-D supramolecular networks. C–H ··· S interactions are a vital factor in constructing the sulfur-containing coordination polymers. Different coordination modes and packing schemes in 13 show that the guest molecule has a critical influence on formation of polymers.  相似文献   

11.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

12.
{[CdCl(2,2′-bipy)2(H2O)]+·[Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?·3H2O} (1) and {[Cd(phen)3]2+·2[Cd(3-O?-2,7-NDS)(phen)2]?·8.5H2O} (2) (3-OH-2,7-NDS?=?3-hydroxy-2,7-naphthalenedisulfonate, phen?=?1,10-phenanthroline, and 2,2′-bipy?=?2,2′-bipydine) were prepared and characterized by X-ray single-crystal diffraction. Compound 1 contains a discrete coordination cation [CdCl(2,2′-bipy)2(H2O)]+ and a coordination anion [Cd(3-O?-2,7-NDS)(2,2′-bipy)2]?; 2 contains a discrete coordination cation [Cd(phen)3]2+ and two coordination anions [Cd(3-O?-2,7-NDS)(phen)2]?. There are numerous weak interactions among the coordination cation, coordination anion, and free water molecules, such as O–H?···?O hydrogen bonds, π?···?π stacking, and Cl??···?π interactions in 1 and π?···?π stacking and C–H?···?π interactions in 2. The cations and anions as building blocks are connected to construct different 3-D supramolecular architectures via weak intermolecular interactions. Particularly, the capsule structure of 1 was observed.  相似文献   

13.
Three pillared polymeric complexes, {[Ni2(AIP)2(4,4′-bpt)(H2O)2]·4H2O}n (1), {[Co(AIP)(3,3′-bpt)]·H2O}n (2), and {[Ni(AIP)(3,3′-bpt)]·H2O}n (3) (H2AIP = 5-aminoisophthalic, 4,4′-bpt = 1H-3,5–bis(4-pyridyl)-1,2,4-triazole and 3,3′-bpt = 1H-3,5-bis(3-pyridyl)-1,2,4-triazole), have been hydrothermally synthesized and characterized by X-ray diffraction analysis. Both 1 and 3 have 2-D (6,3) honeycomb layers, which are further interlinked by bent pillared triazole-bipyridine ligands to form a bilayer structure. The structures can be simpli?ed to a (3,4)- and (3,5)-connected geometrical topology, respectively. Compound 2 has a Co-AIP layer structure in which the layers are pillared by 3,3′-bpt spacers to form the 3-D CsCl net.  相似文献   

14.
《Journal of Coordination Chemistry》2012,65(16-18):2632-2645
Abstract

By changing the ancillary ligands, three new zinc-based coordination polymers (CPs), {[Zn(4,4′-bpy)(H2O)4]·(TDC)·(H2O)}n (1), [Zn(2,2′-dmbpy)(TDC)]n (2), and [Zn2(3,3′-dmbpy)(TDC)2]n (3) (H2TDC =2,5-thiophenedicarboxylic acid, 4,4′-bpy =4,4′-bipyridine, 2,2′-dmbpy =2,2′-dimethyl-4,4′-bipyridine, 3,3′-dmbpy =3,3′-dimethyl-4,4′-bipyridine) have been synthesized under the same reaction conditions (H2O, pH =7–8, and 140°C) and were structurally characterized. 1 is a linear chain structure and further connected into a 3-D structure through hydrogen bonds. 2 shows a 2-D (4,4) network when the dinuclear [Zn2(COO)4N2] building unit is regarded as a six-connected node. 3 has a twofold-interpenetrating 3-D zinc-organic framework pcu topology. Furthermore, 1–3 show strong photoluminescence at room temperature in the solid state, and the catalytic activities of 1–3 for degradation of methyl orange in a Fenton-like process have been investigated. The results suggest that the ancillary ligands influence the final resulting CPs.  相似文献   

15.
Two new coordination polymers, [Zn(H2btc)(4,4′-bpy)2] n (1) and {[Cd(H2btc) (terpy)]?·?H2O} n (2) (H4btc?=?biphenyl-2,2′,4,4′-tetracarboxylic acid, 4,4′-bpy?=?4,4′-bipyridine, terpy?=?terpyridine), have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. Complexes 1 and 2 are 1-D chains linked through partially deprotonated H4btc. The adjacent 1-D chains of 1 are further formed into 2-D supramolecular architecture through inter-chain N–H···O hydrogen bonds. In contrast, due to a different auxiliary ligand, the 1-D chains of 2 are further extended into 3-D supramolecular framework through inter-chain O–H···O hydrogen bonds. Thermal stabilities and luminescence of 1 and 2 were also studied.  相似文献   

16.
Three inorganic–organic hybrid materials based on Keggin-type polyoxometalates (POMs), [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2][PMo12O40]2·2H2O (1), [CuII(phen)2(H4,4′bipy)][PW12O40]·H2O (2), and [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2](H24,4′-bipy)0.5·3H2O (3) (phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine), were synthesized using different POMs in the hydrothermal conditions. Compounds 1–3 were characterized by single-crystal X-ray diffraction, IR spectra, elemental analyses, powder X-ray diffraction analyses, and thermogravimetric analyses. Compound 1 presents a two-dimensional (2-D) network containing the Keggin-type [PMo12O40]3? anion and dinuclear metal–organic units [CuII2(phen)2(4,4′-bipy)(H4,4′-bipy)2(H2O)2]3+. Compound 2 is a 2-D architecture constructed from a [PW12O40]3? and mononuclear metal–organic units [CuII(phen)2(H4,4′-bipy)]3+. In 3, the [BW12O40]5? anions link [CuII2(phen)2(4,4′-bipy)] units to form a one-dimensional (1-D) chain [CuII2(phen)2(4,4′-bipy)(BW12O40)(H2O)2]; the 1-D chain connects with protonated 4,4′-bipy ligands and lattice waters, yielding a 2-D layer. Fluorescence spectra, UV–vis spectra, and electrochemical properties of 1–3 have been investigated.  相似文献   

17.
One novel 1D polymer, [Cd2(m-BrPhHIDC)2(4,4′-bipy)(H2O)2]n (1) (m-BrPhH3IDC = 2-(3-bromophenyl)-1H-imidazole-4,5-dicarboxylic acid; 4,4′-bipy = 4,4′-bipyridine), has been hydrothermally synthesised and characterised by single-crystal X-ray diffraction, elemental analysis, IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis. Polymer 1 composed of tetranuclear square [Cd2(m-BrPhHIDC)2] second building units and 4,4′-bipy bridges shows the interesting tunable luminescence properties aroused by pyridine. A luminescence enhance mechanism has been proposed.  相似文献   

18.
By employing 2-(4-methoxyphenyl)-1H-imidazole-4,5-dicarboxylic acid (p-MOPhH3IDC) to react with Cd(II), Zn(II) and Sr(II) ions, four polymers, [Cd(p-MOPhHIDC)(2,2′-bipy)]n (2,2′-bipy = 2,2′-bipyridine) (1), [Zn0.5(p-MOPhH2IDC)·H2O]n (2), {[Cd4(p-MOPhHIDC)4(C2H5OH)2(H2O)2]·4C2H5OH·2H2O}n (3) and {[Sr2(H2MOPhIDC)2(C8H4O4)(H2O)6]·6H2O}n (4) have been solvothermally synthesised and structurally characterised by single-crystal X-ray diffraction. Polymer 1 is a chain with 2,2′-bipy appending in the same side. Polymer 2 is a 2D rhombus grid structure. The π?π interactions between the aromatic groups supply the additional stabilisation for the solid-state structures of 1 and 2. Polymer 3 shows a 3D framework bearing 1D open channels. Polymer 4 exhibits a 2D latticed plane. The thermal and photoluminescence properties of 14 have been investigated as well.  相似文献   

19.
By hydrothermal reactions of a newly designed ligand, 2-(p-tert-butylphenyl)-1H-imidazole-4,5-dicarboxylic acid (H3BuPhIDC) with Cd(II) or Zn(II), three metal-organic frameworks, [Cd(μ3-HBuPhIDC)(H2O)]·2H2O (1), [Cd(μ3-HBuPhIDC)(4,4′-bipy)0.5] (4,4′-bipy = 4,4′-bipyridine) (2), and [Zn23-HBuPhIDC)2(CH3OH)2] (3), have been obtained and characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction. In 1, small countless diamond grids form a mesh structure and then are bridged through μ3-HBuPhIDC2? linkers building a 3-D framework. Compared with 1, 4,4′-bipy participates in the construction of a 3-D structure of 2. Polymer 3 shows an interesting 3-D open architecture, which contains infinite 1-D octagonal channels built by left- and right-handed helical chains. Thermal and solid-state photoluminescence properties of the polymers have been investigated.  相似文献   

20.
Seven new metal-organic coordination polymers, [M(tzda)(H2O)4] n [M = Co(1), Ni (2) and Zn(3)], [Zn(tzda)(4,4′-bipy)] n (4), [Cd(tzda)(4,4′-bipy)0.5(H2O)] n (5) and [M(tzda)(4,4′-bipy)(H2O)] n [M = Co(6), Ni(7)] [H2tzda = (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid, 4,4′-bipy = 4,4′-bipyridine] have been hydrothermally synthesized and structurally characterized by X-ray single crystal diffraction. Compounds 13 display similar 1D zigzag chain structure. Compound 4 possesses a 2D-layered architecture generated from [Zn(tzda)] n moiety with double-chain structure cross-linking 4,4′-bipy spacers, while compound 5 consists of –Cd–OCO–Cd–OCO– chains cross-linked through –CH2SC2N2SSCH2– spacers of tzda anions and 4,4′-bipy, also showing a 2D-layered structure. The structures of 6 and 7 seem more complicated, in which the [M(tzda)] n layered subunits are extended to unique 3D framework by the bridging 4,4′-bipy ligand. Photoluminescence investigations reveal that 4 and 5 both display strong blue emissions in the solid state at room temperature, which could be significant in the field of luminescent materials. The magnetic studies of 6 and 7 show both display the characteristics of a weak antiferromagnetic coupling between metal ions in the system mediated by carboxylate bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号