首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of LnIII–SrII heterometallic coordination polymers formulated as [Ln2Sr3(pda)6(H2O)18]·nH2O (Ln = Pr-1, n = 14; Nd-2, n = 12; Sm-3, n = 11; Eu-4, n = 11; Gd-5, n = 16; Tb-6, n = 13; Dy-7, n = 13) were synthesized via assembly of Ln(NO3)3·6H2O, SrCl2·6H2O, pyridine-2,6-dicarboxylic acid (H2pda) and imidazole (im) in H2O/C2H5OH solution. Single crystal X-ray diffraction revealed that they are isostructural. All of these complexes possess ladder-shaped 1-D chain structures. The luminescent properties of Sm-3, Eu-4, Gd-5, Tb-6 and Dy-7 have been investigated. The solid-state quantum yields and the lifetimes of Eu-4 and Tb-6 are also studied.  相似文献   

2.
A series of lanthanide-based coordination polymers (Ln2(CBOB)2(OX)·H2O, where Ln = Gd (1), Eu (2), Pr (3), and Tb (4); CBOB = 4-[(4′-carboxybenzyl)oxy]benzoate; OX = oxalate), were obtained from the reaction of H2OX, H2CBOB, and Ln(NO3)3 with the metal salts. Single-crystal measurements show that both 1 and 2 feature unique 3-D structures with the [Ln(COO)n(C2O4)m] layers connected by CBOB ligands. Moreover, 1, 3, and 4 are antiferromagnetic and 2 and 4 display obvious luminescence emission peaks. Furthermore, quantum Monte Carlo (QMC) simulations and the experimental results reveal that the magnetic coupling parameters of adjacent Gd(III) ions in 1 are ?0.026(2) and ?0.0069(3) cm─1.  相似文献   

3.
Six new coordination complexes, Ln2(2,2′-oba)2(phen)2(ox)(H2O)2 (Ln = Eu 1, Tb 2), Ln4(2,2′-oba)6(phen)2 (Ln = Eu 3, Tb 4), Eu4(2,2′-oba)6(phen)2(H2O) (5), and K[Eu(2,2′-oba)2(phen)2] (6) [2,2′-H2oba = 2,2′-oxybis(benzoic acid), phen = 1,10-phenanthroline, H2ox = oxalic acid] were synthesized by hydrothermal reactions with the same compound molar ratios but different modulatory reagents (MRs). Complexes 1–5 have different 1-D chain structures and 6 shows a mononuclear structure. These complexes form diverse 3-D supramolecular networks through hydrogen bonds. The interaction between these complexes and hippuric acid (HA) or bovine serum albumin (BSA) was investigated by fluorescence spectral analysis. Interestingly, the hippuric acid could quench the luminescence of these complexes while the fluorescence of BSA could be quenched by these complexes. Results suggested that the complexes may be potential luminescent testing reagents for HA or BSA by significant fluorescence quenching of Ln3+ or BSA, respectively, through a static and dynamic quenching process.  相似文献   

4.
Self-assemblies of the 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and Cu(OH)2 in the presence of dicarboxylate ligands yielded four new complexes, [Cu4(bpca)4(L1)2(H2O)2]·5H2O (1), [Cu2(bpca)2(L2)(H2O)2]·2H2O (2), [Cu2(bpca)2(L3)(H2O)2]·H2O (3), and [Cu2(bpca)2(L4)(H2O)2]·3H2O (4) (bpca = bis(2-pyridylcarbonyl)amide anion, H2L1 = phthalic acid, H2L2 = succinic acid, H2L3 = maleic acid, H2L4 = acetylenedicarboxylic acid). Their structures were determined by single-crystal X-ray diffraction analyzes and further characterized by IR spectra and thermogravimetric analyzes. The five-coordinate Cu ions in 1 are bridged by phthalate to form 1-D chains, which are assembled into 3-D frameworks by extensive hydrogen bonds. Compounds 2–4 possess similar structures, built up of [Cu2(bpca)2(L)(H2O)2] (L = L2 for 2, L3 for 3, L4 for 4) and lattice molecules. The 3-D frameworks of 2–4 are completed by hydrogen bond interactions.  相似文献   

5.
Four lanthanide complexes, [La2(2,4-DClBA)6(5,5′-DM-2,2′-bipy)2(H2O)2]·2C2H5OH (1) and [Ln(2,4-DClBA)3(5,5′-DM-2,2′-bipy)(C2H5OH)]2 (Ln = Pr(2), Sm(3), Gd(4); 2,4-DClBA = 2,4-dichlorobenzoate; 5,5′-DM-2,2′-bipy = 5,5′-dimethyl-2,2′-bipyridine), were synthesized and characterized via elemental analysis, infrared spectra and thermogravimetric analysis (TG). The crystal structures of 1 and 2–4 are different; Each La3+ is nine-coordinate adopting a distorted mono-capped square antiprism, while the Ln3+ ions of 2–4 are all eight-coordinate with a distorted square antiprismatic molecular geometry. There are subtle changes in the local coordination geometry of the lanthanide–5,5′-DM-2,2′-bipy complexes. Binuclear 1 complexes are stitched together via two kinds of hydrogen bonding interactions (OH?O and CH?O) to form 1-D chains along the y axis, while the units of 2–4 are stitched together via CH?O to form 1-D chains along the x axis. TG analysis revealed thermal decomposition processes and thermal stabilities of the complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.  相似文献   

6.
The lanthanide biphenyl-4,4′-dicarboxylates (bpdc) series of the general formulae Ln2(bpdc)3·nH2O, where Ln = lanthanides from La(III) to Lu(III); bpdc = C12H5(COO) 2 2? ; n = 4, 5 or 6 have been obtained by the conventional precipitation method. All prepared complexes were characterized by elemental analysis, simultaneous thermal analyses thermogravimetric-differential scanning calorimetry (TG–DSC) and TG–FT-IR, FT-IR, and FT-Raman spectroscopy as well as X-ray diffraction patterns measurements. In the whole series of analyzed complexes the bpdc2? ligand is completely deprotonated. In view of that, four carboxylate oxygen atoms are engaged in the coordination of Ln(III) ions. The synthesized compounds are polycrystalline and insoluble in water. They crystallize in the low symmetry crystal systems, like monoclinic and triclinic. Heating in the air atmosphere resulted in the multi-steps decomposition process, namely endothermic dehydration and strong exothermic decomposition processes. The dehydration process leads to the formation of stable anhydrous Ln2bpdc3 compounds which subsequently decompose to the corresponding lanthanide oxides.  相似文献   

7.
The hydrothermal reaction of rare earth nitrates, CuCN, 2,7-naphthalenedisulfonate (2,7-nds), and isonicotinic acid (Hina) affords a new family of 3-D heterometallic 3d–4f coordination polymers, [Ln2Cu(2,7-nds)2(ina)4(H2O)4]·4H2O (Ln = Nd (1), Sm (2), Eu (3), Gd (4); 2,7-nds = 2,7-naphthalenedisulfonate, Hina = isonicotinic acid). Complexes 1–4 are structurally characterized by single crystal X-ray diffraction, elemental analysis, FT-IR spectroscopy (IR), powder X-ray diffraction, and thermogravimetric analyses. X-ray crystal structure analyses reveal that 1–4 are isomorphous with dinuclear subunit [Sm2(ina)4] binding Cu ions to generate 2-D networks. Such 2-D networks are pillared by linking 2,7-nds ligands to result in the 3-D layer-pillared Ln(III)–Cu(II) coordination architectures. The valence of Cu salts changed in the reaction. In addition, the luminescence properties of 1–3 and the magnetic properties of 3 and 4 have also been investigated.  相似文献   

8.
Six new Ln(III) complexes viz., [Gd(tptz)(SCN)3(CH3OH)2OH2]·CH3OH (1), [Eu(tptz)(SCN)3(CH3OH)2OH2]·CH3OH (2), [Tb(tptz)(SCN)3(OH2)3]4 (3), [Gd(tptz)(OBz)2(μ-OBz)OH2]2·2H2O (4), [OH2(OBz)2(tptz)Eu1(μ-OBz)2Eu2(tptz)(OBz)2OH2]·CH3OH·7H2O (5), and {[Tb1(tptz)(OBz)2(μ-OBz)]2·[Tb2(tptz)(OBz)3CH3OH]2}·2CH3OH·4H2O (6) (Ln = Gd, Eu, Tb; tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine; BzONa = sodium benzoate), have been synthesized and characterized by physicochemical methods including single-crystal X-ray crystallography. The X-ray studies demonstrate that 1–3 are mononuclear, whereas 4–6 are binuclear. The photophysical properties of 1–6 have been studied with ultraviolet absorption and emission spectral studies. Their thermal properties have been studied by thermogravimetric (TG) and derivative thermogravimetric analysis (DTG), demonstrating that the final product after decomposition was Ln2O3 for all these complexes.  相似文献   

9.
The thermal dehydration-decomposition of Ln2(SeO4)3·nH2O (wheren=12 forLn=Pr, Nd andn=8 forLn=Sm) and PrxLn2−x(SeO4)3·nH2O (wheren=12 forx=1.0 andLn=Nd;n=8 forx=0.2 and 1.0 in case ofLn=Sm) have been reported.
Zusammenfassung Die thermische Dehydratation-Zersetzung von Ln2(SeO4)3·nH2O (mitn=12 fürLn=Pr, Nd undn=8 fürLn=Sm) und PrxLn2−x(SeO4)3·nH2O (mitn=12 fürx=1.0 undLn=Nd;n=8 fürx=0.2 und 1.0 in Falle vonLn=Sm) wurde beschrieben.
  相似文献   

10.
A series of new two-dimensional (2D) lanthanide(III) coordination polymers, namely {[Ln2(μ 2-HTFMIDC)3(DMA)4] · 2H2O} n [Ln = Pr (1); Nd (2); Sm (3); Eu (4); H3TFMIDC = 2-(trifluoromethyl)-1H-imidazole-4,5-dicarboxylic acid, DMA = N,N′-dimethylacetamide] for type I and {[Ln2(μ 2-HTFMIDC)3(DMA)2(H2O)2] · DMA} n [Ln = Eu (5); Gd (6)] for type II, have been successfully prepared under solvothermal conditions and structurally characterized for the first time. Both two types of structures exhibit similar 2D honeycomb-like networks, which are constructed by the linkages of μ 2-HTFMIDC2? bis-(bidentate) bridging ligands and Ln(III) metal centers. However, slightly different ABAB stacking fashions of the 2D layers and distinctly different hydrogen bonding interactions between the neighboring 2D layers are observed in crystal structures of type I and type II, which may be attributed to the lanthanide contraction effect. Meanwhile, the solid-state luminescent properties of 4 and 5 have been also investigated.  相似文献   

11.
A family of phenoxo-bridged heterometallic Schiff base trinuclear complexes, [Fe2LnL2(C3H7COO)(H2O)]·CH3OH·CH3CN·H2O (Ln = Sm, 1; Gd, 2; Tb, 3; Dy, 4) is reported. Those complexes were afforded by “one-pot” reaction of a polydentate Schiff base ligand 2-hydroxy-3-methoxy-phenylsalicylaldimine (H2L) with Fe(NO3)3·9H2O, Ln(NO3)3·6H2O and sodium butyrate (C3H7COONa) in a mixture of methanol and acetonitrile in the presence of triethylamine as a base. Single-crystal X-ray diffraction analysis reveals that the structures of the four complexes are isomorphic. In each complex, two anionic [FeL2]? units coordinate to the central lanthanide ion as a tetradentate ligand using its four phenoxo oxygens, forming a two-blade propeller-like molecular shape. Magnetic properties of 1–4 were investigated using variable temperature magnetic susceptibility, and weak ferromagnetic exchange between the FeIII and LnIII ions has been established for the Gd derivative. The Tb and Dy complexes show no evidence of slow relaxation behavior above 2.0 K.  相似文献   

12.
Six 3-D lanthanide(III)-metal-organic frameworks (MOFs) through multidentate 3,5-bis(4′-carboxy-phenyl)-1,2,4-triazole (H2BCPT); acetic acid (HOAc); and corresponding trivalent rare earth chloride, {[Ln(BCPT)(OAc)(H2O)]·(H2O)}n (Ln = Nd3+ (1); Sm3+ (2), Gd3+ (3), Tb3+ (4), Ho3+ (5), Yb3+ (6)), have been synthesized. MOFs 1–6 were characterized via FT-IR spectroscopy, elemental analysis, X-ray single-crystal diffraction, thermal analysis, and fluorescence. MOFs 1–6 are isomorphous, which can be described as a 3-D construction containing a dinuclear cluster [Tb2(CO2)2(O)2]. The 3-D structure with (4,4) topologies have been extended through BCPT2? using μ4-kO;kO;kO;kO coordination modes. Solid-state luminescence of 1–4 and 6 shows the characteristic bands of Nd3+, Sm3+, Tb3+, and Yb3+ from visible to near-infrared spectral regions.  相似文献   

13.
以3,3'',5,5''-四-(羧基苯基)联苯为配体(H4L),与镧系金属Ln(Ⅲ)盐反应,自组装形成了5个具有三维孔洞结构的镧系金属-有机框架材料:{[Ln3L2(H2O)7]·(OH)·10DMA}n(Ln=Gd (1a); Ln=Ho(2a), {[Ln3L2(H2O)3]·(OH)·mDMA}n (Ln=Er,m=10(1b); Ln=Yb, m=9(2b); Ln=Lu, m=10(3b))。单晶X射线衍射分析表明,这些MOFs属于2种系列的类质同晶化合物,分别属于正交晶系Ccca空间群和单斜晶系C2/c空间群。有机小分子溶剂交换荧光研究发现,2b对小分子二氯甲烷和甲苯荧光有增强效应,表现出良好的荧光探测功能。  相似文献   

14.
A series of tetranuclear lanthanide compounds, [Ln4(μ3-OH)2L4(NO3)2(DMF)2] (H2L = 2-(2-hydroxy-3-methoxybenzylideneamino)phenol; Ln = Dy (1); Tb (2); Er (3); and Gd (4)), have been prepared under hydrothermal conditions. X-ray crystal structure analysis reveals that 14 are polymorphs. The cores of the structures can be described as co-planar defect-dicubane. The solid-state luminescent properties indicate that the LnIII ions have very deep influence on the luminescence of H2L. The magnetic properties for 14 were studied. The Dy4 complex exhibits single-molecule magnet behavior.  相似文献   

15.
Abstract

We report the synthesis and characterization of a series of Ln-based bromoanilato 2-D lattices with dimethyl sulfoxide (DMSO): [Ln2(C6O4Br2)3(DMSO)n]·2DMSO·mH2O with n = 6 and m = 0 for Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6) and Gd (7); n = 4 and m = 2 for Ln = Tb (8), Dy (9), Ho (10), Er (11), Tm (12) and Yb (13) (C6O4Br22? = 3,6-dibromo-2,5-dihydroxy-1,4-benzoquinone = bromoanilato). The X-ray analysis shows that the largest Ln(III) ions (La-Gd, 1-7) crystallize in the monoclinic P21/n space group (phase I), whereas the smaller Ln(III) ions (Tb–Yb, 813) crystallize in the triclinic P-1 space group (phase II). Both phases present a (6,3)-2-D topology but show important differences derived from the different coordination number of the Ln(III) in both phases. In phase I, the Ln(III) ions are nine-coordinate with a tri-capped trigonal prism geometry and rectangular cavities with no solvent molecules. In phase II, the Ln(III) ions are eight-coordinate with a triangular dodecahedral geometry and distorted hexagonal cavities having two water molecules. These differences are due to the lanthanoid contraction. The magnetic properties show that the Ln(III) ions are isolated and do not present any noticeable magnetic interactions as expected for bromoanilato bridges and Ln(III) ions.  相似文献   

16.
An exploration of reactions of 1,1′,1″-(benzene-1,3,5-triyltris(methylene))tris(4-carboxypyridinium)-tribromide (H3LBr3) with LnIII salts has led to the formation of three complexes, {[LnL(H2O)2]·3(NO3)·6H2O} (Ln = Eu (1), Gd (2), and Tb (3)). Single-crystal X-ray analyses revealed that these complexes are isomorphous and have 3-D, channel-like structures, in which the carboxylic acids are fully deprotonated with synsyn μ2-η1:η1 type bridging modes and L ligands in a chair-shaped configuration. Both 1 and 3 showed strong luminescence upon excitation. Magnetic measurements were performed for 2 and 3. The magnetic studies show that very weak antiferromagnetic couplings exist between GdIII and GdIII in 2. Moreover, powder X-ray diffraction, infrared spectroscopy, and elemental analysis were also performed.  相似文献   

17.
Five coordination polymers containing linear lanthanide–oxygen clusters 1–5 have been synthesized by a hydrothermal reaction of 3-(quinolin-8-yloxy) phthalic acid (H2L) with the respective lanthanide salt. The X-ray single crystal structural analyses revealed that these five crystalline materials belong to two isostructures with formulas [LnHL2(H2O)2]n (Ln1, where Ln = La 1, Ce 2, Pr 3) and [Ln(HL)(L)(H2O)]n (Ln2, where Ln = Nd 4, Sm 5), respectively, which are attributed to the effect of lanthanide contraction. In both structures, the lanthanide cations were bridged by two carboxyl groups of L2? through Ln–O bonds to form 1-D linear lanthanideoxygen clusters, which were further connected by intermolecular ππ stacking interactions between quinolinyl units to generate 3-D supramolecular polymers with moderate luminescence and high thermal stability.  相似文献   

18.
刘珍  陈晓  冯云龙 《无机化学学报》2016,32(8):1413-1420
以3,3’,5,5’-四-(羧基苯基)联苯为配体(H4L),与镧系金属Ln(Ⅲ)盐反应,自组装形成了5个具有三维孔洞结构的镧系金属-有机框架材料:{[Ln3L2(H2O)7]·(OH)·10DMA}n(Ln=Gd(1a);Ln=Ho(2a),{[Ln3L2(H2O)3]·(OH)·mDMA}n(Ln=Er,m=10(1b);Ln=Yb,m=9(2b);Ln=Lu,m=10(3b))。单晶X射线衍射分析表明,这些MOFs属于2种系列的类质同晶化合物,分别属于正交晶系Ccca空间群和单斜晶系C2/c空间群。有机小分子溶剂交换荧光研究发现,2b对小分子二氯甲烷和甲苯荧光有增强效应,表现出良好的荧光探测功能。  相似文献   

19.
A series of 3-D lanthanide-transition 3d-4f heterometallic complexes have been synthesized by hydrothermal route from mixtures of 2,2′-bipyridyl-5,5′-dicarboxylic acid (H2bpdc) and acetic acid (HAc) with tetrazoleacetic acid as template. The single-crystal X-ray analysis shows that nine CdLn(H2O)2Cl2(bpdc)Ac complexes (Ln = La for 1, Pr for 2, Nd for 3, Sm for 4, Eu for 5, Gd for 6, Dy for 7, Ho for 8, Er for 9) crystallized in the space group P-1 and featured three-nodal (3, 4, 6)-three connected topological frameworks. The photocatalytic behaviors imply that 19 have significant photocatalytic activities for degradation of RhB.  相似文献   

20.
Reactions of Zn/Cd(ClO4)2·6H2O and terephthalic acid (H2BDC) with three bis-triazole ligands afforded three coordination polymers under solvothermal conditions, {[Zn(BDC)(L1)]·H2BDC}n (1), {[Zn(BDC)(L2)0.5]·H2O}n (2), and {[Cd2(BDC)2(L3)(DMF)(H2O)2]·2H2O]}n (3) (L1 = bis(4-(4H-1,2,4-triazol-4-yl)phenyl)methane, L2 = bis(4-(4H-1,2,4-triazol-4-yl)phenyl)ethane, and L3 = 1,4-bis(4H-1,2,4-triazol-4-yl)benzene). Solid 1 displayed a 2-D structure which contained two kinds of rings. Both 2 and 3 were 3-D threefold interpenetrating frameworks. Solid 2 showed a α–Po-related net, while 3 exhibited an acs-related network with a binuclear node. Furthermore, the photoluminescent properties of 1–3 were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号