首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linear-chain one-dimension polymeric complex of Co(II), [[Co(TMA)2(4,4′-bipyridine)2]?·?H2O] n has been synthesized and characterized. The complex crystallizes in the monoclinic system, space group P2(1)/c with a?=?11.344(3)?Å, b?=?15.880(4)?Å, c?=?23.436(5)?Å, β?=?117.831(10)°, V?=?3733.5(16)?Å3 and D c?=?1.437?g?cm?3. The effective magnetic moment for this complex indicates that there is almost no ferromagnetic coupling between the Co(II) ions and the magnetic behavior is due to the isolated Co(II).  相似文献   

2.
A binuclear copper(II) complex [Cu2 (μ-pyo)2Br4] n (where pyo = pyridine N-oxide) has been synthesized and its structure determined by X-ray crystallography. This complex crystallizes in monoclinic, space group P21/c, with unit cell dimensions a = 11.020(3) Å, b = 10.049(3) Å, c = 7.905(2) Å, β = 110.609(3)°, and Z = 2. The structure was refined to final R = 0.0311 and wR = 0.0721 for 1302 observed reflections (I > 2σ(I)). In the complex, two Cu(II) ions are bridged by two pyo ligands and four bromides coordinate the Cu(II); the distance between the bridged Cu(II) ions is 3.261 Å. The variable-temperature (4–300 K) magnetic susceptibility data show that the magnetic moment is zero. Thus, there exists very strong anti-ferromagnetic coupling between the bridged binuclear Cu(II) ions. Density functional calculations yield a singlet-triplet splitting 2J = ?1355 cm?1.  相似文献   

3.
Two new iron(III) complexes and one iron(II) complex have been synthesized from the solvothermal reactions of FeCl3·6H2O with 3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole (Hbpt) in methanol or acetonitrile. KSCN acted as the reducing agent in the synthesis of iron(II) complex of 3 . [FeCl3(Hbpt)(H2O)]·H2O ( 1 ) crystallizes in the triclinic space group with a = 7.475(1), b = 9.468(2), c = 12.309(2) Å, α = 73.880(2), β = 74.746(2), γ = 81.849(2)°, V = 805.2(2) Å3, Z = 2. [Fe2(bpt)2Cl4] ( 2 ): orthorhombic space group Pnnm with a = 9.895(2), b = 10.632(2), c = 13.195(2) Å, V = 1388.1(4) Å3, Z = 2. [Fe2(bpt)2(MeOH)2Cl2] ( 3 ): orthorhombic space group Pbca with a = 14.4204(16), b = 9.8737(11), c = 19.792(2) Å, V = 2818.1(5) Å3, Z = 4. 1 features the first structurally characterized metal complex of the neutral Hbpt ligand in which the Hbpt ligand adopts an unprecedented zwitterionic form. 2 shows a neutral dinuclear iron(III) complex and the [Fe2(bpt)2]4+ unit is ideally planar. The two iron(III) ions separated by a distance of 4.408(2) Å are doubly triazolate‐bridged. Each dimeric unit is connected with six other dimeric ones via the bifurcated C‐H···Cl hydrogen bonds, these connections extend the dimeric moieties into a three‐dimensional molecular architecture. 3 is a neutral centrosymmetric dinuclear FeII complex, in which intermolecular moderate O‐H···N hydrogen bonding interactions between the methanol molecules and 4‐position nitrogen atoms of the triazolato groups extend the dinuclear species into a two‐dimensional supramolecular architecture of (4,4) topology. Magnetic studies indicate there exists an antiferromagnetic spin coupling in FeIII2 and FeII2 units via the double triazolate bridges in 2 and 3 .  相似文献   

4.
A novel bridging ligand, (3,5-dichloropyridin-4-yl)(pyridin-4-yl)methanol (I), and its cobalt(II) complex, [Co(I)2(NCS)2]n (II), were prepared. The structures of ligand I and complex II were determined by single crystal X-ray analysis. Magnetic susceptibility measurements were performed for cobalt (II) complex II. Compound I crystallised in orthorhombic space group Pbca with a = 7.6585(14) Å, b = 12.209(2) Å, c = 23.207(4) Å, V= 2170.0(7) Å3 and Z=8. Complex II crystallised in monoclinic space group P21/n with a = 13.223(8) Å, b = 16.959(10) Å, c = 13.948(8) Å, β = 115.395(10)°, V= 2826(3) Å3 and Z = 4. Each cobalt(II) ion is surrounded by two NCS? anions and four pyridyl moieties from two bridging ligands. Each bridging ligand connects two neighbouring Co(II) ions to form a 2-dimensional structure. Temperature dependence of the molar magnetic susceptibilities in the temperature range of 2–300 K revealed that magnetic interactions between the cobalt ions are weak.  相似文献   

5.
A Co(II)-pyridyl substituted nitronyl nitroxide complex Co(NIT4Py)(H2PDA)(H2O)3 has been synthesized and structurally characterized (NIT4Py: 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and H2PDA: 2,5-pyridine dicarboxylic acid). The compound is in the monoclinic space group P2(1)/c, a = 16.892(5) Å, b = 7.371(2) Å, c = 18.856(5) Å, β = 108.770(5)°, V = 2223.0(11) Å3, Z = 4 and F(000) = 1064. The cobalt is in a distorted octahedral environment with one nitrogen from NIT4Py, one oxygen atom from H2PDA, two oxygens from two water molecules in the basal plane and one nitrogen from H2PDA and one water in the axial positions. The molecules are connected as a layered structure by intermolecular hydrogen bond interactions. Variable temperature magnetic susceptibility measurements reveal the occurrence of weak antiferromagnetic interactions in the compound.  相似文献   

6.
Two novel dicyanamide complexes [Co(dmf)2(NCNCN)2] ( 1 ) and [Cu(bipy)(NCNCN)]ClO4 ( 2 ) have been synthesized and structurally characterized. 1 crystallizes in the monoclinic space group C2 with a = 13.568(6)Å, b = 7.403(3)Å, c = 8.118(3)Å and Z = 2, whereas 2 crystallizes in the monoclinic system, Cc group, a = 14.270(7)Å, b = 9.143(5)Å, c = 12.371(1) Å, β = 118.612(7)°, and Z = 4. According to X‐ray crystallographic studies, in complex 1 each CoII ion is six‐coordinated with four nitrogen atoms from four μ1, 5‐dca (dca = dicyanamide) ligands and two oxygen atoms from two dmf ligands to form distorted octahedra. 1 forms a 1‐D network bridged via μ1, 5‐dca. 2 consists of a uniform Cu(NCNCN)Cu chain, each CuII ion is octahedrally coordinated with four nitrogen atoms from two μ1, 5‐dca ligands and one bipy ligand and two oxygen atoms from two ClO4 ions. The octahedral CuII ion shows a significant Jahn‐Teller distortion, with two axial oxygen atoms considerably farther from the copper than the four equatorial nitrogens.  相似文献   

7.
Crystal structures of 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone hydrate (I) and 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-bromo-cyclohexa-2,4-dienone (II) have been determined. The crystals of I are monoclinic, a = 16.957(1) Å, b = 10.729(2) Å, c = 7.240(3) Å; β = 99.56(3)°, space group P21/c, Z = 4, R = 0.0492. The crystals of II are triclinic, a = 10.282(2) Å, b = 7.189(3) Å, c = 16.831(3) Å; α = 90.67(3)°, β = 100.10(3)°, γ = 95.87(3)°; space group P-1, Z = 4, R = 0.0591. The independent part of the unit cell of I contains one unique molecule and water of crystallization, while in II — two unique molecules A and B. C(CH2OH)3 fragment of the molecule B manifests the disordering of alcohol oxygen atoms. Both in I and II, the salicylidene fragment of the molecules exists in the quinoid tautomeric form.  相似文献   

8.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

9.
Twelve ternary alloys in the Ca‐Cu‐Sn system were synthesized as a test on the existing phases. They were prepared from the elements sealed under argon in Ta crucibles, melted in an induction furnace and annealed at 700 °C or 600 °C. Four ordered compounds were found: CaCuSn (YbAuSn type), Imm2, a = 4.597(1) Å, b = 22.027(2) Å, c = 7.939(1) Å, Z = 12, wR2 = 0.080, 1683 F2 values; Ca3Cu8Sn4 (Nd3Co8Sn4 type), P63mc, a = 9.125(1) Å, c = 7.728(1) Å, Z = 2, wR2 = 0.087, 704 F2 values; CaCu2Sn2 (new structure type), C2/m, a = 10.943(3) Å, b = 4.222(1) Å, c = 4.834(1) Å, β = 107.94(1)°, Z = 2, wR2 = 0.051, 343 F2 values; CaCu9Sn4 (LaFe9Si4 type), I4/mcm, a = 8.630(1) Å, c = 12.402(1) Å, Z = 4, wR2 = 0.047, 566 F2 values. In all phases the shortest Cu‐Sn distances are in the range 2.59‐2.66Å, while the shortest Cu‐Cu distances are practically the same, 2.53‐2.54Å, except CaCuSn where no Cu‐Cu contacts occur.  相似文献   

10.
Abstract

The new acidic complexing ligand triethanolamine-O,O,O-triacetic acid, 3, is synthesized by reaction of triethanolamine with chloroacetic acid in the presence of sodium tert-butoxide. The resulting Na complex, 4, and its dihydrate, 5, contain two ligand molecules, both with one Na+ ion interaction and both co-ordinated to a third, central, Na+ ion. In addition the acidic ligands are hydrogen bonded to each other, like carboxylic acids, and in 4, by three crystallographically symmetric hydrogen bonds, while in 5, due to the breakdown of symmetry, two normal and one crystallographically symmetrical hydrogen bond. Inside this extraordinary dimeric assembly (a pseudo-cryptate) are the three sodium ions encapsulated, like in cryptates, with a Na+…Na+ distance of 3.357(3) Å (4) and 3.325(2) Å (5). Crystal data, 4: a = 12.198(1) Å, c = 40.926(5) Å, V = 5274(3) Å, trigonal, space group = R-3c (no. 157), d calc = 1.346 g cm?3, Z = 6, obs. refl. [I > σI] = 396, R = 0.045; 5: a = 25.045(5) Å, b = 11.373(2) Å, c = 14.301(2) Å, β = 122.38(1)°, V = 3440(1) Å3, monoclinic, space group = C2/c, d calc = 1.446 g cm?3, Z = 4, obs. refl. [I > 2σI] = 1362, R = 0.041.  相似文献   

11.
A two-dimensional coordination complex [Cd(μ1,3-SCN)22-mpdo)] n (mpdo?=?4-methylpyridine N-oxide) has been synthesized and structurally determined by X-ray crystallography. The complex crystallizes in the triclinic space group of with a?=?8.2589(14)?Å, b?=?8.5409(14)?Å, c?=?9.7947(16)?Å, α?=?70.022(2)°, β?=?74.338(2)°, γ?=?71.530(2)°. Each Cd(II) is coordinated by four μ1,3-SCN? forming a zigzag chain and then two μ2-mpdo monodentate ligands coordinate to two adjacent Cd(II) ions leading to a two-dimensional sheet structure along the ab plane, and in the c direction the sheets stack parallel through π–π interactions and giving a three-dimensional structure. The complex exhibits a strong fluorescent emission spectrum in the solid state.  相似文献   

12.
Abstract

The crystal structure of tetrakis(N,N′-dimethylthiourea)nickel(II) bromide dihydrate has been determined by three-dimensional x-ray diffraction from 1916 counter-data reflections collected at room temperature.

The structure consists of Ni[SC(NH)2(CH3)2]2+ 4 molecular ions, Br? ions and waters of hydration. The nickel is located on a center of symmetry and is coordinated to four sulfur atoms in a square planar configuration. The waters of hydration and the bromide ions are involved in hydrogen bonding to the N,N′-dimethylthiourea (dmtu) groups. The orientation of the dmtu groups is such that two bond through the sulfur sp2 orbital and the others bond through the π-orbitals of the dmtu group. The Ni-S distances are 2.204 ± 0.002 Å and 2.230 ± 0.002 Å, and the Ni-S-C angles are 106.2 ± 0.2Å and 110.3 ± 0.3°. The dmtu groups are planar except for methyl hydrogens.

The crystals are monoclinic, P21/a with a = 13.424 ± 0.002 Å, b = 12.321 ± 0.005 Å, c = 8.460 ± 0.008 Å β = 107.07 ± 0.05°, ρ0 = 1.67 g cm?3, ρc = 1.66 g cm?3 and Z = 2. The structure was refined by full-matrix least-squares to a conventional R of 0.0466.  相似文献   

13.
One binuclear complex [Co(bpm*)2(dca)]2(ClO4)2 ( 1 ) and two 1D chain CoII complexes, {[Co(bpm)2(dca)](ClO4)}n ( 2 ) and [Co(dmf)2(dca)2]n ( 3 ), (bpm*: bis[(3, 5‐dimethyl)pyrazolyl]methane; bpm: bis(pyrazolyl)methane; dca: dicyanamide; dmf: N, N‐dimethyl formamide) have been prepared and structurally characterized. The cobalt atoms are hexa‐coordinated forming a slightly distorted octahedral coordination. Compound 1 crystallizes in the monoclinic system, space group P21/c, a = 9.849(3)Å, b = 21.944(7)Å, c = 13.814(5)Å, β = 94.824(6), Z = 4, R1 = 0.0672, wR2 = 0.1395. 1 is a binuclear complex linked by two dca ligands, and each CoII ion is coordinated by two terminal bpm* ligands. Compound 2 crystallizes in the orthorhombic system, space group Cmcm, a = 10.377(4)Å, b = 13.594(5)Å, c = 15.999(6)Å, Z = 4, R1 = 0.0609, wR2 = 0.1328. The structure of 2 can be described as a one‐dimensional zigzag chain of CoII ions bridged by one dca ligand. Each CoII ion in the chain is coordinated by two bpm ligands. Compound 3 crystallizes in the monoclinic system, space group C2, a = 13.559(15)Å, b = 7.393(8)Å, c = 8.110(9)Å, β = 112.228(15), Z = 2, R1 = 0.0260, wR2 = 0.0760. 3 has a one‐dimensional linear chain of CoII ions bridged by two dca ligands, in which each CoII ion is coordinated with two dmf molecules.  相似文献   

14.
A Cu(II) complex of 2-benzylmercapto-5-methyl-1,3,4-thiadiazole was synthesized and characterized. The crystal structure of the copper complex and the free ligand were determined by single-crystal X-ray diffraction at room temperature: {[Cu(C10H10N2S2)2(Cl)2], P 1 triclinic, a = 8.1450(2) Å, b = 8.1690(2) Å, c = 10.8180(3) Å, α = 97.4040(12)°, β = 101.6270(11)°, γ = 116.1431(14)°; C10H10N2S2 ligand, Pbca orthorhombic, a = 8.7938(7) Å, b = 9.6491(7) Å, c = 25.3552(18) Å}. The metal complex framework consists of discrete units that provide crystalline stability through a network of van der Waals contacts. The Cu(II) is coordinated by two chloride ions and two 2-benzylmercapto-5-methyl-1,3,4-thiadiazole monodentate ligands showing a distorted square planar configuration. Both thiadiazole ligands coordinate through the N atom bonded to the benzylthio substituted C atom.

The FTIR spectroscopic data are consistent with this structural model. Analysis of the magnetic susceptibility from 5 K to room temperature indicates the presence of paramagnetic Cu(II), confirmed by the EPR spectrum.  相似文献   

15.
The structure of the complex {(2-α-pyridylethyl)tris(phenyl)phosphonium}trichlorozinc(II), which is an unexpected product of the reaction of the Zn2+ ion with coordinated 4,5-(2-pyridylethylene)dithio-1,3-dithiol-2-thione, is described. The reaction mechanism is studied by the ESI method of positive and negative ions. The crystals are monoclinic, space group P21/c, a= 16.129(3) Å, b = 11.167(2) Å, c = 14.874(3) Å β = 91.77(3)°, Z = 4. The Zn(II) atom has a quasi-tetrahedral environment of three chloride ions and one phosphonium cation coordinated at the nitrogen atom of the pyridyl fragment.  相似文献   

16.
N-(R-carbamothioyl)cyclohexanecarboxamides (R: diethyl, di-n-propyl, di-n-butyl, diphenyl and morpholine-4) and their Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analyses, FT-IR and NMR methods. N-(diethylcarbamothioyl)cyclohexanecarboxamide, HL1, C12H22N2OS, crystallizes in the orthorhombic space group P212121, with Z = 4, and unit cell parameters, a = 6.6925(13) Å, b = 9.0457(18) Å, c = 22.728(5) Å. The conformation of the HL1 molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1–C6–N2–C5, C6–N2–C5–N1 and S1–C5–N2–C6 of 1.68°, ?67.47° and 115.50°, respectively. The structure of HL1 also shows a delocalization of the π electrons of the thiocarbonyl group over the C–N bonds. The ring puckering analysis shows that the cyclohexane ring has a chair conformation. The bis(N-(morpholine-4-carbonothioyl)cyclohexane carboxamido)nickel(II) complex, Ni(L5)2, C24H38N4NiO4S2, crystallizes in the monoclinic space group P21/c, with Z = 4, and unit cell parameters, a = 16.919(3) Å, b = 8.3659(17) Å, c = 19.654(4) Å, β = 107.43(3)°. Ni(L5)2 is a cis-complex with a slightly distorted square-planar coordination of the central nickel by two oxygen and two sulfur atoms.  相似文献   

17.
M[B(CN)4]2: Two new Tetracyanoborate Compounds with divalent Cations (M = Zn, Cu) The reaction of ZnO or CuO with [H3O][B(CN)4] in aqueous solution yielded single crystals of Zn[B(CN)4]2 and Cu[B(CN)4]2, respectively. The compounds were characterized by single‐crystal X‐ray diffraction. Zn[B(CN)4]2 ( (no. 164), a = b = 7.5092(9) Å, c = 6.0159(6) Å, Z = 1) crystallizes isotypic with Hg[B(CN)4]2. The structure of Cu[B(CN)4]2 (C2/m (no. 12), a = 13.185(3) Å, b = 7.2919(9) Å, c = 6.029(1) Å, β = 93.02(2)°, Z = 2) can be considered as a super‐structure, resulting from Jahn‐Teller distortion of the Cu2+ ions. Magnetic measurements were performed for the copper compound. Vibrational spectra and thermal stabilities were compared with the known mercury(II) tetracyanoborate.  相似文献   

18.

The preparation, spectroscopic properties and crystal structure of (bis-imidazole)quinoline-copper(II) dichloride [Cu(Im)2(quin)Cl2] (Im = imidazole, quin = quinoline) and tetraimidazole-copper(II)-dichloride [Cu(Im)4Cl2] are reported. Both cocrystallize on the triclinic system, space group P-1, with cell constants a = 8.095(5) Å, b = 12.141(5) Å, c = 13.847(5) Å, α = 108.816(5)°, β = 104.173(5)°, γ = 94.965(5)° and Z = 2. In the [Cu(Im)2(quin)Cl2] complex the copper(II) ion is coordinated to two imidazole molecules, to one quinoline and two chlorine ions, with the copper(II) ion in a distorted trigonal bipyramidal coordination geometry. In the [Cu(Im)4Cl2] complex, the copper(II) ion has a distorted octahedral coordination geometry. The superoxide dismutase mimetic activity of the complexes was investigated using the indirect xanthine-xanthine oxidase-nitroblue tetrazolium method and compared to that of the native enzyme.  相似文献   

19.
The new compounds A2ZnP2Se6 (A = K, Rb, Cs) were synthesized via molten salt flux syntheses. The crystals feature one‐dimensional 1/[ZnP2Se6]2– chains charge balanced by alkali metal ions between the chains. K2ZnP2Se6 crystallizes in the monoclinic space group P21/c; cell parameters a = 12.537(3) Å, b = 7.2742(14) Å, c = 14.164(3) Å, β = 109.63(3)°, Z = 4, and V = 1216.7(4) Å3. Rb2ZnP2Se6 and Cs2ZnP2Se6 are isotypic, crystallizing in the triclinic space group P$\bar{1}$ . Rb2ZnP2Se6 has cell parameters of a = 7.4944(15) Å, b = 7.6013(15) Å, c = 12.729(3) Å, α = 96.57(3)°, β = 105.52(3)°, γ = 110.54(3)°, Z = 2, and V = 636.6(2) Å3. Cs2ZnP2Se6 has cell parameters of a = 7.6543(6) Å, b = 7.7006(6) Å, c = 12.7373(11) Å, α = 97.007(7)°, β = 104.335(7)°, γ = 109.241(6)°, Z = 2, and V = 669.54(10) Å3.  相似文献   

20.
Abstract

We examined complexing sites of the Pb2+ complex of the macrocyclic lactam 1 using 15N NMR and other spectroscopies and we have found that the amide groups undergo conformational changes to allow the complexation process to proceed via the pyridine nitrogen atom and carbonyl and ethereal oxygen atoms. X-Ray analysis of compound 1 was carried out successfully. Space group I41/a, a=28.332(4)Å, b=28.332(4)Å, c=10.7379(4)Å, Z=16, V=8619.3(18)Å3, Dc=1.197gcm?3, R1=0.0479 (based on 2510 reflections I>2[sgrave](I). It shows presence of intramolecular hydrogen bonds, which are broken during the complexation. Molecules form supramolecular tetragonal assemblies in the crystal, which form channels the walls of which are 7.42 Å apart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号