首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new organic hosts are described that contain a tetraaza[14]annulene core to which two crown ether voids are attached. These hosts include a free base tetraaza[14]annulene and/or its complexes with benzo-15-crown-5 rings. The crown tetraaza[14]annulene is synthesized from tetraaza[14]annulene and 4′-chloroformylbenzo-15-crown-5. Its nickel(II) and copper(II) complexes are prepared in a similar manner as above. In solution the compounds do not tend to form aggregates. However, aggregation is affected by the presence of alkali-metal salts, which coordinate to the crowns. Li+ and Na+ cations with diameters that match the diameters of the crown ether rings form 1:2 host-guest complexes. Complexes with 2:2 host-guest stoichiometry are formed when the diameters of K+ and Cs+ cations exceed that of the crown ether rings. Nevertheless, it is weak for the present macrocycle and its complexes to be inclined to form dimers owing to the steric hindrance of the substituent groups and owing to restraining the rotation of the carbonyl bond connecting the crown ether group.  相似文献   

2.
A modified synthetic route for the complexes [Cu(II)5,7,12,14-tetramethyldinaphtho [b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)tmdnTAA], and [Cu(II) 5,7,12,14-tetramethyl-6,13-dichloro-dinaphtho[b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)dCltmdnTAA], is presented in this work. The electrochemical characterization of both complexes and their precursors, [bis(2,4-pentanedionato)copper(II)], [Cu(II)(acac)2] and [bis(3-chloro-2,4-pentanedionato)copper(II)], [Cu(II)(3-Cl-acac)2], respectively, under nitrogen and carbon dioxide is also presented. The voltammetric response of [Cu(II)(acac)2] and [Cu(II)(3-Cl-acac)2] are different compared to [Cu(II)tmdnTAA] and [Cu(II)dCltmdnTAA] under nitrogen. Precursors show the reduction of Cu(I) to Cu(0) and the tetraazadinaphtho[14]annulene complexes do not. The chlorine substituted complex has a lower reduction potential than the unsubstituted homologue under nitrogen atmosphere. However, the contrary response is obtained in the presence of carbon dioxide: the unsubstituted complex is more catalytic in terms of potential because the current discharge appears 270?mV shifted to the anodic region. These facts can be explained in terms of electronic and steric effects. The modified electrode obtained by oxidative electropolymerization of [Cu(II)tmdnTAA] over glassy carbon electrode presented a suitable amperometric response for the sulfite reduction in acidic medium (pH?=?2.7). A linear correlation was observed for the catalytic current and sulfite concentration between 0.6–6.0?mM range.  相似文献   

3.
The IR and resonance Raman spectra of the nickel(II) complexes of dibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TAA) and 5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraaza[14]annulene (TMTAA) have been measured and compared with ab initio calculations of the vibrational wavenumbers at the B3-LYP level using the LanL2DZ basis set. An excellent fit is found between the experimental and calculated data, enabling precise vibrational assignments to be made. Surface-enhanced resonance Raman spectra were obtained following adsorption on Ag electrodes, with potentials in the range -0.1 to -1.1 V vs Ag/AgCl. There is evidence for contributions from both the electromagnetic and charge transfer (CT) surface enhancement mechanisms. The data indicate that variations in band intensities with electrode potential can be interpreted in terms of the CT mechanism.  相似文献   

4.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

5.
Summary Complexes of cobalt(II), cobalt(III) and rhodium(III) with TCEC and TAPC have been synthesised. TCEC with cobalt(II) gave [Co(TCEC)Br]Br and [Co(TCEC)Cl]Cl, five coordinate high spin square pyramid complexes, but the corresponding cobalt(III) complex could not be characterised. Rhodium(III) gave a six coordinate [Rh(TCEC)Cl2]Cl complex, in which the two coordinated chlorides have acis-geometry and the four pendant arms lie on one side of the N4 plane with none of the —CN groups coordinated TAPC on the other hand gives the cobalt(III) complex, [Co(TAPC)Br]Br2, in which one of the amino groups of the four pendant arms is coordinated to cobalt. Rhodium(III) with TAPC gave [Rh(TAPC)Cl]Cl2 in which one axial site is occupied by the amino group of one of the pendant arms and the other by Cl.  相似文献   

6.

The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes.  相似文献   

7.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

8.
A new preparation of N,N'-bis(2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(2)bped) is reported, and its properties of complexation with Al(III), Ga(III), In(III), and Co(III) are investigated. The molecular structure of the cobalt(III) complex [Co(bped)]PF(6).CH(3)CN.H(2)O (C(20)H(25)CoF(6)N(5)O(5)P) has been solved by X-ray methods; the complex crystallizes in the triclinic space group P&onemacr;, with a = 10.611(2) ?, b = 12.720(2) ?, c = 9.868(1) ?, alpha = 102.70(1) degrees, beta =93.60(1) degrees, gamma = 106.96(1) degrees, and Z = 2. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.041 (R(w) = 0.038) for 4312 reflections with I > 3sigma(I). The Co(III) ion is coordinated in a distorted octahedral geometry with an N(4)O(2) donor atom set. The carboxylato oxygen atoms are coordinated trans, while the pyridyl nitrogen atoms are coordinated cis. The largest distortion from octahedral geometry is the N(pyridyl)-Co-N(pyridyl) angle of 107 degrees. Complex formation constants have been measured at 25 degrees C (&mgr; = 0.16 M (NaCl)). log K([M(bped)](+)) (log K([M(bped)(OH)])): M = Al, 10.85 (6.37); M = Ga, 19.89 (15.62); M = In, 22.6 (15.44). A protonated complex was also detected, [Ga(Hbped)](2+), log K = 21.79. The order of stability is In(III) > Ga(III) > Al(III) for the binary species, [M(bped)](+). The solution structures of the complexes have been probed in multinuclear NMR ((1)H, (13)C, (27)Al) studies, and these solution structures are compared with the solid state structure of the cobalt(III) complex. The complexes [In(bped)](+) and [In(bped)(OH)] are proposed to contain 7-coordinate In(III) with water and hydroxide completing the respective coordination spheres. The gallium complexes are proposed to be 6-coordinate: the [Ga(Hbped)](2+) complex contains a nondeprotonated carboxylic acid group which is not coordinated, and [Ga(bped)(OH)] contains a coordinated hydroxide which displaces a carboxylato donor. The [Al(bped)(OH)] complex may be 5-coordinate on the basis of its downfield (27)Al NMR chemical shift, 54 ppm.  相似文献   

9.
The electron transfer kinetics of the reaction between the surfactant-cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+, cis-α-[Co(trien)(C12H25NH2)2]3+(en:ethylenediamine, trien:triethylenetetramine, C12H25NH2 : dodecylamine) by iron(II) in aqueous solution was studied at 298, 303, 308 K by spectrophotometry method under pseudo-first-order conditions using an excess of the reductant in self-micelles formed by the oxidant, cobalt(III) complex molecules, themselves. The rate constant of the electron transfer reaction depends on the initial concentration of the surfactant cobalt(III) complexes. ΔS# also varies with initial concentration of the surfactant cobalt(III) complexes. By assuming outer-sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of the self-micelles formed by the surfactant cobalt(III) complexes in the reaction medium. The rate constant of each complex increases with initial concentration of one of the reactants surfactant-cobalt(III) complex, which shows that self micelles formed by surfactant-cobalt(III) complex itself has much influence on these reactions. The electron transfer reaction of the surfactant-cobalt(III) complexes was also carried out in a medium of various concentrations of β-cyclodextrin. β-cyclodextrin retarded the rate of the reaction.  相似文献   

10.

Mononuclear cobalt(II) and cobalt(III) complexes, [Co(trenb)(N3)]Cl (1) and [Co(dienb)(N3)2(OAc)] (2) (trenb = tris[2-(benzylamino)ethyl]amine, dienb = 1,9-diphenyl-2,5,8-triazanonane) were synthesized and characterized by elemental analyses, IR and electronic spectra. Their crystal structures were also determined by X-ray diffraction analyses. In Complex 1, cobalt(II) is five-coordinate trigonal bipyramidal with one azido nitrogen atom and four nitrogen donors of the tripodal ligand; the chloride interacts weakly with one of the secondary amino groups of trenb via a hydrogen bond. In Complex 2, cobalt(III) is in a distorted octahedral coordination environment, consisting of three nitrogen atoms of the amine ligand, two azide nitrogen atoms and an oxygen atom of the acetate ion; a six-membered ring involving the hydrogen bond may stabilize the complex, which maintains its solid geometry in DMF as indicated by the electronic spectrum.  相似文献   

11.
The condensation reaction between tetraaza[14]annulene nickel(II) complex and a series of para-substituted benzoyl chlorides gave the corresponding 7,16-dibenzoylated products in 53–98% yields. The mass spectra exhibit molecular ion peaks ascribed to the 7,16-dibenzoylated products. The intense ir band due to the C?O stretching mode in these nickel(II) complexes is present in the 1650–1658 cm?1 range upon the benzoylation. Even though the ligand moiety of these six complexes is changed by benzoylation, the electronic spectra hardly vary. These nickel(II) complexes assume roughly the square-planar coordinations as judged by the ligand-field transition bands. The olefinic proton peaks at the 7- and 16-positions vanish on benzoylation in the proton nmr spectra and the proton signals of the para-substituted benzoyl groups are observed in the 2.4–8.4 ppm region. The results of the carbon-13 nmr spectra are compatible with those for the proton nmr spectra.  相似文献   

12.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

13.
Synthesis of Octahydro-porphinato-cobalt(III) Complexes as Vitamin B12 Model Compounds The synthesis of (±)-dibromo[1-hydroxy-2,2,3,3,7,7,8,8,12,12,13,13,17,17,18,18-hexadecamethyl-10,20-diaza-octahydroporphinato]cobalt(III) (2a) is described. The dicyano complex 2b and the corresponding annulene complex 3 have been obtained by exchange of its axial ligands and by elimination of the hydroxy group, respectively.  相似文献   

14.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

15.
The reaction of tetraaza[14]annulene and its complexes with nicotinoyl chloride hydrochloride and/or isonicotinoyl chloride hydrochloride produced the 7,16-dinicotinoylated and/or 7,16-diisonicotinoylated corresponding products in satisfactory yields. The mass spectra reveal the molecular ion peaks due to the 7,16-diacylated products. A strong ir band which is correlated with a C = 0 stretching mode is freshly observed in the 1635–1670 cm?1 region upon the acylation. The electronic spectra for the complexes hardly change upon the acylation, but those for the ligands change slightly. The olefinic proton signals at the 7- and 16-positions disappear on the acylation in 1H-nmr spectra and the substituted pyridine proton signals are newly observed. The proton nmr results are consistent with those of the carbon-13 nmr. The spin Hamiltonian parameters for the acylated copper(II) complexes are comparable with those for the copper(II) complex which is not acylated. The copper(II) complexes assume the square-planar coordinations with an unpaired electron in the dx2?y2 orbital.  相似文献   

16.
The method of cyclic voltammetry (CV) was used to compare electrochemical and electrocatalytic properties of meso-triphenylcorrole [H3(ms-Ph)3Cor] and also its complexes with Mn(III), Co(III), Cu(III), and Zn(II) in 0.1M KOH. Metal-localized redox transitions are detected in the complexes of Mn (III ?? IV) and (III ?? II), Co (III ?? II), Cu (III ?? II). It is shown that the manganese complex features most effective catalytic properties in the reaction of molecular oxygen electroreduction.  相似文献   

17.
A new ligand dibenzo[h]quinolineno[1,3,7,9] tetraazacyclododecine-7,15 (14H, 16H)-dibenzene (L) and its Co(II)/Cu(II) metal complexes of type [MLX2] (Where (M = Co(II) (5), Cu(II) (6) and X = Cl) were synthesized and are well characterized by FT-IR, 1H-NMR, FAB mass elemental analysis, and electronic spectral data. The role of the cobalt/copper metals in photo-induced DNA cleavage reactions was explored by designing complex molecules having macrocyclic structure. Finally, we have shown that photocleavage of plasmid DNA is more efficiently enhanced when this macrocyclic ligand is irradiated in the presence of copper(II) than that of cobalt metal.  相似文献   

18.
Iron and cobalt complexation with salicylaldehyde hydrazone (SH) has been studied spectrophotometrically employing solvent extraction technique. The Fe(III)-SH (1:3) and Co-SH (1:2) complex absorb at 510nm and 450 nm respectively. The sensitivity of the colour reactions are 0.014 and 0.005 in terms of Sandell's definition for iron and cobalt systems. Both the complexes show maximum and constant absorbance in the pH ranges 3.5 to 5.0 and 6.2 to 7.0 for Fe(III)-SH and Co(II)-SH respectively. The complexation has been used in the spectrophotometric determination of iron and cobalt in coexistence with several ions.  相似文献   

19.
The condensation of 2-pyridinecarboxaldehyde N-oxide and triethylenetetramine yields a product with two imidazolidine rings, as proven by a solid-state X-ray structure analysis as well as by NMR solution spectra. This ligand, L1, undergoes a ring-opening reaction on complex formation with Cu(II), yielding [CuL2]2+ where L2 functions as a pentadentate ligand, containing only one imidazolidine ring. On complexation with Zn(II) and Fe(III), both rings are opened and the complexes [ZnL3]2+ and [FeL3]3+ with a hexadentate L3 ligand are formed. The recrystallization of [ZnL3]2+ from DMSO solution results in the complex [ZnL1(DMSO)2]2+ in which L1 behaves as a tetradentate ligand. Thus L1, L2, and L3 are structural isomers with two, one, or no imidazolidine rings, as confirmed by X-ray structure analyses. The intramolecular ring formation is the result of the nucleophilic addition of the N(amino) group to the electrophilic sp2-hybridized -HC delta+=N site. Owing to the absence of the chelate effect on the sp3-hybridized carbon atom belonging to the imidazolidine ring, the ring opening is facilitated and readily observed upon complex formation with Cu(II), Zn(II), and Fe(III).  相似文献   

20.
Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with a new tetraaza macrocyclic ligand have been synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, mass, thermogravimetric (TGA), IR, 1H and 13C NMR, electronic and ESR spectral studies. All the complexes are found to have the formula [MLX2]x nH2O and are six-coordinated with distorted octahedral geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号