首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

2.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

3.
4,4′-Bis(chloroacetyl)diphenyl ether (HL) was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst by Friedel-Crafts reaction. Subsequently, its keto oxime (H2L) and glyoxime (H4L) derivatives were also prepared. Then, five new substituted 4,4′-oxy-bis(aminophenyl-glyoximes) (H4L1–5) were synthesized from 4,4′-oxy-bis(chlorophenylglyoxime) and the corresponding amines. The Ni(II), Cu(II), and Co(II) complexes of these ligands were prepared. The structures of these ligands and their complexes were identified by FT-IR, 1H NMR, and ICP-AES spectral data, elemental analyses, and magnetic measurements.  相似文献   

4.
We describe the synthesis and characterization of two novel azo ligands, 4,5-dihydroxy-3,6-bis(2-hydroxyphenylazo)-2,7 naphthalene disulfonic acid (H2L) and 4,5-dihydroxy-3,6-bis(2-hydroxy-4-sulfophenylazo)-2,7-naphthalenedisulfonic acid (H2L1). The Cu(II), Ni(II), and Co(II) complexes of these ligands were prepared and characterized by infrared, UV–Vis, 1H- and 13C-NMR spectra, atomic absorption spectroscopy, mass spectrometry, elemental analyses, thermogravimetric analysis, conductivity, cyclic voltammetry, and magnetic measurements. The results suggest that the complexes have a 2:1 (metal:ligand) molar ratio, involving binuclear azo ligands with an ONO donor set. Metal ion uptake studies were conducted with a batch technique. Preliminary histological studies were also made. The results indicate that the azo ligands have high thermal stability, good metal extraction capacity, and favorable dying properties with certain tissues.  相似文献   

5.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
New heteronuclear complexes containing oxorhenium(V), Cu(II), Ni(II), Fe(III), UO2(VI) and Th(IV) ions were prepared by the reaction of the complex ligand, [ReO(H4L)Cl]Cl2, where H4L = 8,17-dimethyl-6,15-dioxo-5,7,14,16-tetrahydrodibenzo[a,h][14]annulene-2,11-dicarboxylic acid, with the previous transition and actinide salts. Three heteronuclear Cu(II) complexes were isolated depending on the ratio of [ReO(H4L)Cl]Cl2?:?Cu(II) ion. When the ratios were 1?:?0.5, 1?:?1 and 1?:?2, the heteronuclear complexes {[ReO(H3L)Cl]2CuCl2(OH2)2}SO4 · H2O (I), [ReO(H3L)Cl2Cu(OH2)2(SO4)] (II) and {ReO(H2L)Cl[Cu(OH2)3 SO4]2} (III) were obtained, respectively. Heteronuclear complexes of the other metal cations were obtained by mixing [ReO(H4L)Cl]Cl2 with the metal salt in the ratio 1?:?1 to obtain the heteronuclear complexes [ReO(H3L)Cl2Ni(OH2)2](NO3)2 (IV), [ReO(H3L)Cl3Fe(OH2)3](NO3)2 (V), [ReO(H3L)ClUO2(NO3)2 (OH2)]Cl (VI) and [ReO(H3L)Cl3Th(NO3)2(OH2)]NO3 · 2H2O (VII). The complex ligand coordinates with the heterometal ion via the carboxylate group, and the infrared bands νas COO and νs COO indicate that the carboxylate acts as a unidentate ligand to the heterometal cations. Cu(II) and Fe(III) cations in the heteronuclear complexes have octahedral geometry, while Ni(II) is square planar. Thermal studies explored the possibility of obtaining new heteronuclear complexes pyrolytically in the solid state from the corresponding mother complexes. The structures of the complexes were elucidated by conductance, IR and electronic spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

7.
The [Co(HOr)(H2O)2(im)2] (1), [Ni(HOr)(H2O)2(im)2] (2), [Zn(H2O)2(im)4](H2Or)2 (3) and [Cd(HOr)(H2O)(im)3] (4) complexes (H3Or: orotic acid, im: imidazole) were synthesized and characterized by elemental analysis, magnetic and conductance measurements, UV-vis and IR spectra. The thermal behaviour of the complexes was also studied by simultaneous thermal analysis techniques (TG, DTG and DTA). The orotate ligand (HOr2−) coordinated to the Co(II), Ni(II) and Cd(II) ions are chelated to the deprotonated pyrimidine nitrogen (N(3)) and the carboxylate oxygen, while do not coordinate to the Zn(II) ion is present as a counter-ion (H2Or). The first thermal decomposition process of all the complexes is endothermic deaquation. This stage is followed by partially (or completely) decomposition of the imidazole and orotate ligands. In the later stage, the remained organic residue exothermically burns. On the basis of the first DTGmax, the thermal stability of the complexes follows order: 2, 176°C>1, 162°C>4, 155°C>3, 117°C in static air atmosphere. The final decomposition products which identified by IR spectroscopy were the corresponding metal oxides.  相似文献   

8.
The 12- and 14-membered diazadioxo macrocyclic ligands, 1,2?:?7,8-diphenyl-6,9-diaza-3,12-dioxocyclododecane (L1) and 1,2?:?8,9-diphenyl-7,10-diaza-3,14-dioxocyclotetradecane (L2), were synthesized by condensation between o-phenylenediamine, 1,2-dibromoethane/1,3-dibromopropane, and catechol. Metal complexes [ML1Cl2] and [ML2Cl2] [M?=?Co(II), Ni(II), Cu(II), and Zn(II)] were prepared by interaction of L1 or L2 with metal(II) chlorides. The ligands and their complexes were characterized by elemental analyses, IR, 1H, and 13C NMR, EPR, UV-Vis spectroscopy, magnetic susceptibility, conductivity measurements, and Electrospray ionization-mass spectral (ESI-MS) studies. The results of elemental analyses, ESI-MS, Job's method, and conductivity measurements confirmed the stoichiometry of ligands and their complexes while absorption bands and resonance peaks in IR and NMR spectra confirmed the formation of ligand framework around the metal ions. Stereochemistry was inferred from the UV-Vis, EPR, and magnetic moment studies.  相似文献   

9.
Zn(II), Co(II) and Ni(II) complexes with some 5-substituted-1,3,4-thiadiazoles (L1-L4) have been prepared and characterized by conductivity, microanalysis, thermal analysis, infrared and electronic spectra measurements. All complexes behave as 1:1 electrolyte and the ligands are coordinated as bidentate molecules. The stability constants and energy of formation are determined and discussed on the basis of the ligands structure.  相似文献   

10.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

11.
Schiff base ligand (H3L) was prepared from the condensation reaction of protochatechualdehyde (3,4-dihydroxybenzaldhyde)with 2-amino phenol. From the direct reaction of the ligand (H3L) with Co(II), Ni(II) and Cu(II) chlorides, and Fe(III)and Zn(II)nitrates in 2?M/1?L molar ratio, the five new neutral complexes were prepared. The characterization of the newly formed compounds was done by 1H NMR, UV?CVis, and IR spectroscopy and elemental analysis. The in vitro antibacterial activity of the metal complexes was studied and compared with that of free ligand.  相似文献   

12.
In the present study, two new ligands, 4-chlorobenzal-azino-isonitrosoacetophenone (L1), 4-methylbenzal-azino-isonitrosoacetophenone (L2) and their metal complexes were synthesized using acetophenone as a starting material. The coloured complexes were prepared by the addition of chloride salts of Ni(II), Co(II), Cu(II) and Zr(IV) ions to a solution of ligands. In conclusion, the structures of the obtained ligands and their complexes were characterized by FT-IR, and 1H NMR spectra, AAS (atomic absorption spectrum) analysis, magnetic susceptibilities as well as elemental analysis.  相似文献   

13.
New complexes of Co(II), Ni(II), and Cu(II) nitrates, chlorides, and perchlorates with 4-(4-hydroxyphenyl)-1,2,4-triazole (L) were obtained and examined by single-crystal X-ray diffraction, X-ray powder diffraction, and electronic absorption and IR spectroscopy. The cations of all the complexes have linear trinuclear structures. Ligand L is coordinated to the metal ions in a bidentate bridging fashion through the N(1) and N(2) atoms of the heterocycle. The coordination polyhedron of the metal atoms is a distorted octahedron. The molecular and crystal structures of the complexes [Co3L6(H2O)6](ClO4)6 · 3C2H5OH · 3.75H2O and [M3L6(H2O)6](ClO4)6 · 6H2O (M = Cu2+ and Ni2+) were determined.  相似文献   

14.
Cystine forms metal complexes of general formula [MII(C6H10N2O4S2)]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) in the aqueous medium. Before reacting with metal salts the ligand solution was neutralized by NaHCO3 solution. The complexes were formulated by comparing the C, H, N, S and metal analysis data. The prepared complexes were characterized by different physicochemical methods. The UV-vis, FTIR spectral analysis, magnetic susceptibility of these complexes are discussed. Cyclic voltammetric studies of some of the complexes are also reported.  相似文献   

15.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

16.
The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A1), thiophene-o-carboxaldene-p-toluidine (A2), and its metal complexes of the formula [(MII(L)(A)(H2O)] (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A1 or A2) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb. The text was submitted by the authors in English.  相似文献   

17.
A new calix[4]pyrrole functionalized vic-dioxime, 3-(4-methyl-9,9,14,14,19,19-hexaethylcalix[4]pyrrole)benzoaminoglyoxime (LH2) was synthesized from anti-chloroglyoxime and 3-aminophenyl-calix[4]pyrrole at room temperature. The mononuclear complexes {nickel(II), copper(II) and cobalt(II)} of this vic-dioxime ligand were prepared and their structures were confirmed by elemental analysis, IR and UV–Vis spectrophotometry, magnetic susceptibility; the MS, 1H and 13C NMR spectra of the LH2 ligand and its Ni(II) complex were also recorded. The experimental results indicated that the ligand:metal ratio was 2:1 in the cases of Ni(II), Cu(II) and Co(II) complexes as is with most vic-dioximes. Electrochemical properties of the ligand, and its complexes were investigated in DMSO solution by cyclic voltammetry at 200?mV?s?1 scan rate.  相似文献   

18.
Neutral complexes of three phthalhydrazidylazo-1,3-diketones [phthalhydrazidylazo-acetylacetone (H2PAA),-benzoylacetone (H2PBA) and-dibenzoylmethane (H2PDM)] with Cu(II), Ni(II), Pd(II) and Fe(III) have been synthesised and characterized on the basis of their analytical data, magnetic moment, molar conductance and IR and1H NMR spectral data. Dibasic tridentate coordination of the ligands is brought out by the above spectral data. Half-wave potentials and far IR spectral data of the Cu(II) complexes indicate that the H2PAA complex is the most stable. M?ssbauer spectra of the Fe(III) complexes reveal that delocalisation of the metald electrons with the chelate ring decreases with increasing capability of the pendant groups of the ring for cross conjugation.  相似文献   

19.
Reactions of title ylide, {(C6H5)3PCHCOC6H4C6H5)} (BPPPY), with mercury(II) halides in equimolar ratios in methanol yielded dinuclear complexes [(BPPPY)HgCl2]2 (1), [(BPPPY)HgBr2]2 (2), and [(BPPPY)HgI2]2 (3). Reactions of BPPPY with CdCl2 in equimolar ratios gave [(BPPPY)CdCl2]2 (4). Reaction of PdCl2 with BPPPY (1/2) in acetonitrile at room temperature gave cis/trans [PdCl2{CH(PPh3)COC6H4C6H5}2] (5). The same reaction at reflux gave the orthopalladated complex [Pd{CH{P(2-C6H4)Ph}(COC6H4C6H5)}(μ-Cl)]2 (6) along with the phosphonium salt [Ph3PCHCOC6H4C6H5]Br. The compounds were characterized by elemental analysis, IR-, 1H-, 13C-, and 31P-NMR spectroscopy. Single crystal X-ray analysis of 3 reveals the centrosymmetric dimeric structure containing the ylide and HgI2. Crystallographic data for 3 are: crystal system, monoclinic; space group, P 21/n, a = 15.7744(7), b = 23.0288(9), c = 20.2867(9) Å, β = 112.237(3)°, V = 6821.4(5) Å3, and Z = 1.  相似文献   

20.
N'-[4'-benzo(15-crown-5)]-4-tolylaminoglyoxime (H2L1),the sodium chloride salt of H2L1 (H2L1...NaCl),N'-[4'-benzo(15-crown-5)]-4-chlorophenylaminoglyoxime(H2L2) and the sodium chloride salt of H2L2 (H2L2...NaCl)have been prepared from p-chlorophenylchloroglyoxime,p-tolylchloroglyoxime, 4'-aminobenzo[15-crown-5] and sodiumbicarbonate or sodium bicarbonate and sodium chloride. Nickel (II),cobalt (II) and copper (II) complexes of H2L and H2L...NaClhave a metal-ligand ratio of 1 : 2 and the ligand coordinatesthrough the two N atoms, as do most of the vic-dioximes. Their IR spectra and elemental analyses are given, together with1H NMR spectra of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号