首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Complexes of the type [NiCl(TeAr)(DPPE)] (1) and [Ni-(TeAr)2(DPPE)] (2) [Ar = Ph, C6H4Me-4, C6H4OMe-4 or C6H4OEt-4; DPPE = 1, 2-bis(diphenylphosphino)-ethane] were prepared from [NiCl2(DPPE)] and NaTeAr (generated in situ) in EtOH-C6H6. Their structures were established by elemental analysis, conductance and molecular weight measurements and i.r., electronic, 1H and 31 Pn.m.r. spectra. The analytical and spectroscopic data are consistent with a square planar geometry around nickel in (1) and (2). Metathetical reactions between (1) (Ar = C6H4OMe-4) and NaX (X = I or Br) in MeOH give [NiX(TeAr)(DPPE)] (3). Electrochemical studies of (1) and (2) using c.v. indicate an irreversible cathodic peak (ca. –0.76 to 0.86 V) corresponding to reduction of nickel(II) to nickel(0) and an irreversible anodic peak (ca. –0.04 to 0.37 V) for oxidation of the tellurolate ligand.  相似文献   

2.

Ni(II) complexes of composition [Ni(bziprdtc)(dppf)]X, [Ni(but2dtc)(dppf)]X and [Ni(Rdtc)(dppf)]X [bz = C7H7; ipr = C3H7; but = C4H9; R = pld = C4H8; tz = C3H6S; hmi = C6H12; dtc = S2CN; dppf = 1,1'-bis(diphenylphosphino)ferrocene C34H28P2Fe; X = ClO4, I, Br, NCS] were synthesized and characterized X-ray structural analysis of [Ni(hmidtc)(dppf)]ClO4 confirmed coordination number four for nickel in a distorted, square-planar, NiS2P2 arrangement  相似文献   

3.
Abstract

Nickel(II) complexes with a combination of trithiocyanuric acid and diamines or triamines of composition [Ni(aepa)(ttcH)(H2O)], [Ni(dien)(ttcH)(H2O)], [Ni(dpta)(ttcH)(H2O)] H2O, [Ni(phen)2(ttcH)]H2O, [Ni(phen)3](ttcH)-5H2O and [Ni(1,2-pn)3](ttcH)-H2O (aepa = N-(2-aminoethyl)-1,3-propanediamine,dien = diethylenetriamine,dpta = dipropylenetnamine, phen = 1,10-phenanthroline, 1,2-pn = 1,2-diaminopropane. ttcH3 = trithiocyanuric acid) have been prepared. The compounds have been characterized by means of elemental analysis, IR and electronic spectroscopies and magnetochemical measurements. Selected complexes were studied by thermal analysis. The compounds can be characterized as distorted octahedral Ni(II) complexes. It was found that the trithiocyanuric dianion can act either as a bidentate ligand or be situated out of the coordination sphere of nickel. The crystal and molecular structure of [Ni(dpta)(ttcH)(H2O)] H2O was determined. Crystals are monoclinic, space group P21/n, with a = 20.316(4), b = 7.967(2), c = 21.401(4) Å, β = 99.23(3)°, K=3419.1(13)Å3, Z = 4, T = 293 K. The nickel(II) atom is six-coordinated by three nitrogen atoms from dipropylene-triamine, nitrogen and sulphur from trithiocyanuric acid, and an oxygen atom from a water molecule in a distorted octahedral geometry.  相似文献   

4.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

5.
NiII mixed-ligand complexes of compositions [Ni(pmdien)(ttcH)] (1), [Ni(baphen)2(ttcH)] · 4H2O (2), [Ni-(dpa)(ttcH)(H2O)] (3), [Ni(cyclam)(ttcH)] · 2H2O (4), [Ni(hexaa)](ttcH) (5) and [Ni(hexab)(ttcH)] · 2H2O (6), (baphen = 4,7-diphenyl-1,10-phenanthroline, dpa = 2,2-dipyridylamine, cyclam = 1,4,8,11-tetraazacyclotetradecane, hexaa = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]-octadecane, hexab = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) have been prepared and characterized by means of i.r., u.v.–vis. spectroscopies and magnetochemical measurements. The redox properties of the complexes were studied by cyclic voltammetry. The crystal and molecular structure of [Ni(pmdien)(ttcH)] was determined. The nickel atom is penta-coordinated by three N atoms of pmdien, and by S and N atoms of trithiocyanurate(2–) anion.  相似文献   

6.
Monometallic zinc(II) and nickel(II) complexes, [Zn(H2nsh)(H2O)] (1) and [Ni(H2nsh)(H2O)2] (2), have been synthesized in methanol by template method from bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone (H4nsh). Reaction of monometallic complexes with alternate metal(II) acetates as a transmetallator in 1 : 3 molar ratio resulted in the formation of heterobimetallic complexes [NiZn(nsh)(A)3] and [ZnNi(nsh)(A′)2] (A = H2O (3), py (4), 2-pic (5), 3-pic (6), 4-pic (7)), (A′ = H2O (8), py (9), 2-pic (10), 3-pic (11), and 4-pic (12)). The complexes have been characterized by elemental analyzes, mass spectra, molar conductance, magnetic moments, electronic, EPR, and IR spectroscopies. All of the complexes are non-electrolytes. Monometallic zinc(II) is diamagnetic while monometallic nickel(II) complex and all heterobimetallic complexes are paramagnetic. The metal centers in heterobimetallic complexes are tethered by dihydrazone and naphthoxo bridging. Zinc(II) is square pyramidal; nickel(II) is six-coordinate distorted octahedral except [ZnNi(nsh)(A)2], in which nickel(II) has square-pyramidal geometry. The displacement of metal center in monometallic complexes by metal ion has been observed in the resulting heterobimetallic complexes.  相似文献   

7.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Twelve new nickel(II) complexes of functionalized dithiocarabamates [Ni(S2CNRR')2](1-6) and [Ni(S2CNRR')(NCS)(PPh3)](7-12) [where R=furfuryl; R'=2-hydroxy benzyl (1,7), 3-hydroxy benzyl (2,8), 4-hydroxy benzyl (3,9), 4-methoxy benzyl (4,10), 4-fluoro benzyl (5,11), 4-chloro benzyl (6,12)] have been prepared and characterized by elemental analysis, IR, UV-Vis and NMR (1H and 13C) spectroscopy. IR spectra of the complexes support the bidentate coordination of dithiocarbamate ligands. Electronic spectral studies on complexes 1-12 indicate square planar geometry around the nickel(II) central atom. In the 13C NMR spectra, the upfield shift of NCS2 carbon signal for heteroleptic complex (7-12) compared to homoleptic complexes (1-6) is due to the effect of PPh3 on the mesomeric drift of electron density toward nickel through thioureide C-N bond. Single crystal X-ray structural analysis of complex 11 confirms that the coordination geometry about the Ni(II) is distorted square planar. A rare intramolecular anagostic interaction C–HNi [Ni???H=2.804 Å] is observed. The packing of complex 11 is stabilized by non-conventional C–HS, C–H?F and C–H?π(chelate, NiS2C) bonding interactions.  相似文献   

9.
Quantum-chemical calculations of the 1,10-phenanthroline complexes [M(en)(1,10-phen)]2+ (M = Pt, Pd, Ni; en = NH2C2H4NH2) were performed by the DFT B3LYP method in the 6-31G** basis set using the GAMESS-2006 program package. The calculations were also performed for the nickel complexes with 2,2′-bi-1,10-phenanthroline, [Ni(2,2′-bi-1,10-phen)]2+, and with its electron-excessive analog, [Ni(2,2′-bi-1,10-phen)]0, and also for the octahedral complex cation [Ni(2,2′-bi-1,10-phen)Cl(H2O)]+ characterized by single crystal X-ray diffraction. For the Ni(II) complexes, the stabilities of their high-and low-spin isomers were evaluated, and the structural features were revealed. The barriers to mutual transformations of the low-and high-spin Ni(II) complexes are low.  相似文献   

10.
A new oxamato-bridged NiIICuIINiII species, [Ni(iprtacn)]2[Cu(pba)(H2O)0.5](BPh4)2 (1), (iprtacn?=?1,4,7-triisopropyl-1,4,7-triazacyclononane; pba?=?1,3-propylenebis(oxamato)) has been synthesized and structurally as well as magnetically characterized. Complex 1 has a discrete trinuclear NiIICuIINiII structure: Two nickel(II) ions are bridged by [Cu(pba)]2? with the macrocyclic ligand iprtacn a terminal ligand of nickel(II). Fitting the magnetic data of 1 led to g Cu?=?2.16, g Ni?=?2.18, J?=??112.5?cm?1, D?=?±7.78?cm?1. The irregular spin state structure and interaction of complex 1with DNA are described here.  相似文献   

11.
Sodium-assisted self-assembly of two nickel(II) Schiff base complexes under similar reaction conditions yield hetero-metallic compounds [{Ni(salpn)}2Na(ClO4)] (1) and [{Ni(salpr)}3Na][Ni(salpr)]2ClO4·2H2O (2) (where salpn?=?N,N′-bis-(salicylidene)-1,3-diaminopropane and salpr?=?N,N′-bis-(salicylidene)-1,2-diaminopropane). Both have been characterized by physico-chemical techniques and single-crystal X-ray diffraction. Crystal structure reveals that in the tri-metallic system of 1 sodium is sandwiched between two [Ni(salpn)] units while the hexametallic system of 2 consists of tetrametallic cluster ion [{Ni(salpr)}3Na]+ with encapsulated sodium by three [Ni(salpr)] units. In both complexes, sodium adopts distorted trigonal prismatic geometry leaving nickel(II) in a distorted square-planar environment. Structural characterization also reveals that 2?:?1 (for 1) and 3?:?1 (for 2) self-assemblies of metallo-ligand and sodium were achieved with slight variation in ligand backbone.  相似文献   

12.
The series of platinum(II), palladium(II), and nickel(II) complexes [ML2(dppe)] [M = Ni, Pd, Pt; L = 4–SC5H4N or 4–SC6H4OMe; dppe = Ph2PCH2CH2PPh2] containing pyridine-4-thiolate or 4-methoxybenzenethiolate ligands, together with the corresponding gold(I) complexes [AuL(PPh3)], were prepared and their electrospray ionization mass spectrometric behavior compared with that of the thiophenolate complexes [M(SPh)2(dppe)] (M = Ni, Pd, Pt) and [Au(SPh)(PPh3)]. While the pyridine-4-thiolate complexes yielded protonated ions of the type [M + H]+ and [M + 2H]2+ ions in the Ni, Pd, and Pt complexes, an [M + H]+ ion was only observed for the platinum derivative of 4-methoxybenzenethiolate. Other ions, which dominated the spectra of the thiophenolate complexes, were formed by thiolate loss and aggregate formation. The X-ray crystal structure of [Pt(SC6H4OMe–4)2(dppe)] is also reported.  相似文献   

13.
A 2-D nickel(II) mixed-ligand metal–organic framework [Ni(NPTA)(4,4′-bipy)(H2O)]n (1) was synthesized by reaction of 3-nitrophthalic acid (H2NPTA) and 4,4′-bipyridine (4,4′-bipy) with Ni(II) under hydrothermal condition and characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction analysis. Compound 1 possesses a 2-D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically equivalent Ni ions are bridged by two NPTA ligands. Furthermore, the layers are connected into 3-D supramolecular network by hydrogen bonds. The magnetism and antibacterial activity of 1 were investigated.  相似文献   

14.
Three supramolecular compounds based on [P2Mo5O23]6? and Ni(II)–bim, [Ni(bim)3]3[P2Mo5O23]·2H2O (1), [Ni(Hbim)(bim)2]4[P2Mo5O23]2·3H2O (2), and [Ni(bim)(Hbim)(phen)]2[P2Mo5O23]·7H2O (3) (bim?=?2,2′-biimidazole, phen?=?1,10-phenanthroline), have been synthesized under hydrothermal conditions and characterized by elemental analysis, single-crystal X-ray diffraction, IR, and TG. All the compounds show 3-D supramolecular networks constructed from weak interactions among free Ni(II) complex, water, and oxygens of [P2Mo5O23]6?. Compound 3 represents the first supramolecular example integrating {Ni(bim)(Hbim)(phen)} with Strandberg-type phosphomolybdate. The compounds display good electrocatalytic activity to reduce hydrogen peroxide and intense fluorescence properties in solution at room temperature.  相似文献   

15.
Planar [Ni(bedtc)(PPh3)Cl] (1), [Ni(bedtc)(PPh3)(NCO)] (2), [Ni(bedtc)(PPh3)(NCS)] (3), [Ni(bedtc)(PPh3)(CN)] (4) and [Ni(bedtc)(dppe)]ClO4 (5) (where bedtc = N-benzyl-N-(2-hydroxyethyl)dithiocarbamate anion, PPh3 = triphenylphosphine and dppe = 1,2-bis((diphenylphosphino)ethane)) were prepared from [Ni(bedtc)2]. Complexes 15 were characterized by elemental analysis, electronic, IR and NMR (1H, 13C, and 31P) spectra. Electronic spectra of the complexes show bands corresponding to dz 2 → dxy/dx 2 ? y 2 transitions. The complexes were diamagnetic. IR and 13C NMR studies indicate the mesomeric flow of π-electron density from the dithiocarbamate towards the nickel. In 1H NMR, α-CH2–and β-CH2–protons of–CH2–CH2–OH were equally deshielded. The deshielding for the coordinated phosphorus signals in 31P NMR spectra for all the cases compared with the free phosphine clearly manifests the drift of electron density from the phosphorus toward the metal on complexation. Single crystal X-ray structures of 13 indicate that nickel is in a planar environment with short >S2C–N bond distances. In 2, a rare mode of coordination between nickel and cyanate (NCO?) through the nitrogen is observed. Significant asymmetry in Ni–S bond distances were observed for 13 clearly supporting the trans influences of Cl?, NCO? and NCS?, respectively, over PPh3.  相似文献   

16.
Two Ni(II) metal–organic frameworks, [Ni(INAIP)(DMF)]·0.5DMF and [Ni(INAIP)(H2O)]·2H2O, have been synthesized by the reaction of 5-(isonicotinamido)isophthalic acid (H2INAIP) with NiSO4·6H2O using different reaction solvents. Single-crystal X-ray diffraction analysis indicates that [Ni(INAIP)(DMF)]·0.5DMF has a twofold interpenetrated three-dimensional (3D) framework with sra topology, while [Ni(INAIP)(H2O)]·2H2O has a two-dimensional (2D) network structure with a 4-connected (43·63) topology. In addition, the magnetic and adsorption properties of the complexes were explored.  相似文献   

17.
18.
Three new coordination polymers, [Cu(butca)0.5(bipy)(H2O)] n · 2nH2O (1), [Zn(H2butca) (phen)(H2O)] n · nH2O (2), and [Cd(H2chhca)0.5(phen)(H2O)] n · 2nH2O (3) (H4butca =1,2,3,4-butanetetracarboxylic acid, H6chhca = 1,2,3,4,5,6-cyclohexanehexacarboxylic acid), were prepared and characterized by EA, IR, TG, and X-ray crystallography. Complex 1 is a 1-D double-chain coordination polymer in which tetradentate butca4? coordinates to four Cu(II) ions through four monodentate carboxylates. Complex 2 is a 1-D chain with tridentate H2butca2? coordinating to two Zn(II) ions through monodentate and chelating carboxylates. Complex 3 is a 1-D double-chain coordination polymer. H2chhca4? is octadentate coordinating to four Cd(II) ions through four chelating carboxylates. Hydrogen bonds and π–π stacking interactions play important roles in the formation of supramolecular architectures. The thermal stabilities of 13 show dehydrated coordination polymers are thermally stable in the range 260–400°C.  相似文献   

19.
Synthesis and spectroscopic characterization of Schiff-base complexes of Cu(II), Ni(II), and Mn(II) resulting from condensation of salicylaldehyde derivatives with thiosemicarbazide [PHBT = 1-(5-(2-phenyldiazenyl)-2-hydroxybenzylidene)thiosemicarbazide, CHBT = 1-(5-(2-(2-chlorophenyl)diazenyl)-2-hydroxybenzylidene)thiosemicarbazide, and MHBT = 1-(5-(2-p-tolyldiazenyl)-2-hydroxybenzylidene)thiosemicarbazide] are discussed. The solid complexes were confirmed by elemental analysis (CHN), molar conductance, and mass spectra. Important infrared (IR) spectral bands corresponding to the active groups in the three ligands, 1H-NMR and UV-Vis spectra and thermogravimetric analysis were performed. The dehydration and decomposition of [Cu(PHBT)(H2O)], [Ni(PHBT)(H2O)] · 2H2O, [Mn(PHBT)(H2O)] · H2O, [Cu(CHBT)(H2O)], [Ni(CHBT)(H2O)] · H2O, [Mn(CHBT)(H2O)] · H2O, [Cu(MHBT)(H2O)], [Ni(MHBT)(H2O)] · 2H2O, and [Mn(MHBT)(H2O)] · 2H2O complexes were studied. The ligands are tridentate forming chelates with 1 : 1 (metal : ligand) stoichiometry. The molar conductance measurements of the complexes in DMSO indicate non-electrolytes. The biological activities of the metal complexes have been studied against different gram positive and gram negative bacteria.  相似文献   

20.
Eight new platinum(II)/palladium(II) complexes with 4-toluenesulfonyl-L-amino acid dianion and diimine/diamine ligands, [Pd(en)(Tsile)]·H2O (1), [Pd(bipy)(Tsile)] (2), [Pd(bipy)(Tsthr)]·0.5H2O (3), [Pd(phen)(Tsile)]·0.5H2O (4), [Pd(phen)(Tsthr)]·H2O (5), [Pd(bqu)(Tsthr)]·1.5H2O (6), [Pt(en)(Tsser)] (7), and [Pt(en)(Tsphe)]·H2O (8), have been synthesized and characterized by elemental analyses, 1H NMR and mass spectrometry. The crystal structure of 7 has been determined by X-ray diffraction. Cytotoxicities were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. The complexes exert cytotoxicity against HL-60, Bel-7402, BGC-823, and KB cell lines with 4 having the best cytotoxicity against HL-60, Bel-7402, and BGC-823 cell lines; the compounds are less cytotoxic than cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号