首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
The reaction of [RuHCl(CO)(PPh3)3] with 4-phenylpyrimidine gave a new ruthenium(II) complex, namely [RuHCl(CO)(PPh3)2(pyrim-4-Ph)]. The complex has been studied by IR and UV?Cvis spectroscopy and by X-ray crystallography. The molecular orbitals of the complex have been calculated by density functional theory. The spin-allowed singlet?Csinglet electronic transitions of the complex have been calculated by time-dependent DFT, and the UV?Cvis spectrum of the compound has been discussed on this basis. The emission properties of the complex were also studied.  相似文献   

2.
The [(PPh3)2RuHCl(CO)(Hmtpo)] complex has been prepared and studied by IR, NMR, UV–VIS spectroscopy and X-ray crystallography. The complex was prepared in reactions of [RuHCl(CO)(PPh3)3] with 7-hydroxy-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine in methanol. The electronic structure and UV–Vis spectrum of the obtained compound have been calculated using the TD–DFT method.  相似文献   

3.
The reaction of [RuHCl(CO)(PPh3)3] with pyrimidine gives [RuHCl(CO)(PPh3)2(C4H4N2)]. The compound has been studied by IR, UV-Vis and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with density functional theory (DFT). The spin-allowed singlet-singlet electronic transitions of the complex have been calculated with time-dependent DFT method, and the UV-Vis spectrum of the compound has been discussed on this basis. Emission of the compound was studied.  相似文献   

4.
The reaction of [RuHCl(CO)(PPh3)3] with 8-hydroxyquinoline has been examined and a novel ruthenium(II) complex – [RuCl(CO)(PPh3)2(C9H6NO)] – has been obtained. This compound has been studied by IR, UV–Vis (absorption and emission), 1H and 31P NMR spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the complex have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the compound has been discussed on this basis.  相似文献   

5.
The complexes [RuCl(CO)(PPh3)2(HBIm)] and [RuH(CO)(PPh3)2(1,10-phen)]Cl·H2O·(CH3)2O have been prepared and studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The complexes were prepared in the reactions of [RuHCl(CO)(PPh3)3] with 2-(hydroxymethyl)benzimidazole or 1,10-phenanthroline two hydrate in acetone. The electronic spectra of the obtained compounds have been calculated using the TDDFT method. The luminescence properties of these complexes were examined.  相似文献   

6.
The reactions of [RuHCl(CO)(PPh3)3] with 8-hydroxy-2-methyl-quinoline-7-carboxylic acid and quinoline-2-carboxylic acid have been examined, and two novel ruthenium(II) complexes – [(PPh3)2RuH(CO)(C10H8NO3)] and [(PPh3)2RuCl(CO)(C9H6O2)] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

7.
Chloride, isocyanate and isothiocyanate hydride carbonyl ruthenium(II) complexes of 4-(4-nitrobenzyl)pyridine were synthesized from the precursor complex [RuHCl(CO)(PPh3)3] and characterized by IR, NMR, UV–Vis spectroscopy and X-ray crystallography. The electronic structures of the complexes were investigated by means of DFT calculations, based on their crystal structures. The spin-allowed singlet–singlet electronic transitions of the complexes were calculated by time-dependent DFT, and the UV–Vis spectra are discussed on this basis. The emission properties of the complexes were studied at ambient temperature, and the quantum yields of fluorescence, the lifetimes and nature of the excited states are discussed. The chloride and isothiocyanate complexes are practically nonemissive, with quantum yields under 0.01 %. Interpretation of spectra, supported by TD-DFT calculations, indicates that in this energy region, the transitions have MLCT character with admixture of LLCT (chloride and isothiocyanate complexes). The dominant LLCT character was visible in the case of the most emissive (isocyanate) complex. The low values of the lifetimes and quantum yields for these complexes indicate the influence of the metal center in the emission process.  相似文献   

8.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

9.
The [ReCl3(MeCN)(PPh3)2] complex reacts with bis(pyrazol-1-yl)methane (bpzm) to give [ReCl3(bpzm)(PPh3)]. This compound has been studied by IR, UV–Vis spectroscopy, magnetic measurement and X-ray crystallography. The molecular orbital diagram of [ReCl3(bpzm)(PPh3)] has been calculated with the density functional theory (DFT) method. The spin-allowed triplet–triplet electronic transitions of [ReCl3(bpzm)(PPh3)] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state.  相似文献   

10.
[ReCl3(MeCN)(PPh3)2] reacts with bis(3,5-dimethypyrazol-1-yl)methane (bdmpzm) in acetone to give [ReCl3(bdmpzm)(PPh3)]. The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The molecular orbital diagram of [ReCl3(bdmpzm)(PPh3)] has been calculated with the density functional theory (DFT) method.  相似文献   

11.
Two pseudohalide hydride carbonyl ruthenium(II) complexes with formulae: [RuH(N3)(CO)(PPh3)3] (1) and [RuH(NCO)(CO)(PPh3)3] (2) have been synthesized by the reactions of [RuHCl(CO)(PPh3)3] with sodium azide or sodium cyanate, respectively, and are compared with the previously described thiocyanate analog [RuH(NCS)(CO)(PPh3)3]. The molecular structures of the new compounds were determined by X-ray crystallography and their spectroscopic properties have been studied. Based on the crystal structures, computational investigations have been carried out in order to determine the electronic structures of the complexes. The electronic spectra were calculated with the use of time-dependent DFT methods, and the electronic spectra of the transitions were correlated with the molecular orbitals of the complexes.  相似文献   

12.
J.G. Ma?ecki 《Polyhedron》2011,30(1):79-85
[RuHCl(CO)(PPh3)2(py)], [RuHCl(CO)(PPh3)2(pyIm)] and [RuCl(CO)(PPh3)2(pyoh)]·2CH3OH complexes (where py = pyridine, pyIm = imidazo[1,2-α]pyridine, pyoh = 2-hydroxy-6-methylpyridine) have been prepared and studied by IR, NMR, UV-Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the complexes were defined on the basis of DFT method, and the pyridine derivative ligands were compared on the basis of their donor-acceptor properties. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

13.
The [ReCl3(MeCN)(PPh3)] complex reacts with 1-isoquinolinyl phenyl ketone (N–O) to give [ReCl3(N–O)(PPh3)]. The compound has been studied by IR, UV–Vis spectroscopy, magnetic measurements and X-ray crystallography. The magnetic behavior is characteristic of mononuclear octahedral Re(III) complex with d4 low-spin (3T1g ground state) and arises because of the large spin–orbit coupling, which gives diamagnetic ground state. The molecular orbital diagram of [ReCl3(N–O)(PPh3)] has been calculated with the density functional theory (DFT) method, and time-dependent DFT (TD-DFT) calculations have been employed in order to discussion of its spectroscopic properties in more detail.  相似文献   

14.
Mixed‐ligands hydride complexes [RuHCl(CO)(PPh3)2{P(OR)3}] ( 2 ) (R = Me, Et) were prepared by allowing [RuHCl(CO)(PPh3)3] ( 1 ) to react with an excess of phosphites P(OR)3 in refluxing benzene. Treatment of hydrides 2 first with triflic acid and next with an excess of hydrazine afforded hydrazine complexes [RuCl(CO)(κ1‐NH2NHR1)(PPh3)2{P(OR)3}]BPh4 ( 3 , 4 ) (R1 = H, CH3). Diethylcyanamide derivatives [RuCl(CO)(N≡CNEt2)(PPh3)2{P(OR)3}]BPh4 ( 5 ) were also prepared by reacting 2 first with HOTf and then with N≡CNEt2. The complexes were characterized spectroscopically and by X‐ray crystal structure determination of [RuHCl(CO)(PPh3)2{P(OEt)3}] ( 2b ).  相似文献   

15.
[ReBr2(O)(OCH3)(PPh3)2] has been obtained in the reaction of [ReBr3O(PPh3)2] or [ReBr22-N2COPh-N′,O)(PPh3)2] with an excess of methanol. [ReBr2O(OMe)(PPh3)2] crystallizes in the triclinic space group P-1. The complex was characterized by infrared, UV-Vis, and 1H NMR spectra. The electronic structure of the obtained compound has been calculated using the DFT/TD–DFT method.  相似文献   

16.
《Polyhedron》1999,18(20):2625-2631
Treatment of RuHCl(CO)(L)3 with a slight excess amount of K[HB(3,5-Me2pz)3] in boiling MeOH solution yielded unusual 3,5-dimethylpyrzaole (Hdmpz) complexes, RuHCl(CO)(Hdmpz)(L)2 (L=PPh3, 1 or AsPh3, 2). Unexpectedly the dissociation of the bonds between the boron atom and the nitrogen atoms of the potentially tridentate [HB(3,5-Me2pz)3] ligand during the coordination of the ligand to the RuII metal has been observed. In a separate preparation, the RuHCl(CO)(Hdmpz)(PPh3)2 complex has also been synthesized from the reaction between RuHCl(CO)(PPh3)3 and the monodentate Hdmpz ligand. Complexes 1 and 2 have been characterized by elemental analysis, IR and 1H NMR spectroscopies. Compound 1 has also been prepared by the reaction between RuHCl(CO)(PPh3)3 and K[H2B(3,5-Me2pz)2] in boiling toluene solution. The crystal structure of 2 has been studied by X-ray crystallography. The geometrical structure around RuII of 2 is a distorted octahedral structure. The crystal structure of 2 consists of a discrete monomeric compound. It is interesting to find that the sterically-demanding [HB(3,5-Me2pz)3] or [H2B(3,5-Me2pz)2] ligands break up during the reaction with the RuII complexes to form the neutral 3,5-dimethylpyrazole complexes. In contrast to these observations, [H2Bpz2] and [H2B(4-Brpz)2] ligands form very stable RuII complexes.  相似文献   

17.
The reaction of [RuCl2(PPh3)3] with 1-(2-pyridylcarbonyl)benzotriazole has been examined. A new ruthenium(II) complex–[RuCl(PPh3)2(C6H5N3)(C5H4NCO2)] has been obtained and characterized by IR and UV–Vis measurements. The crystal structure of the complex has been determined. The electronic spectrum of the complex has been calculated by TDDFT method.  相似文献   

18.
Treatment of [Ru(CHCHCH2PPh3)X(CO)(PPh3)2]+ (X=Cl, Br) with KTp (Tp=hydridotris(pyrazolyl)borate) and NaBPh4 produced [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4. Reaction of RuHCl(CO)(PPh3)3 with HCCCH(OEt)2 produced Ru(CHCHCH(OEt)2)Cl(CO)(PPh3)2, which reacted with KTp to give TpRu(CHCHCHO)(CO)(PPh3). Treatment of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and benzaldehyde produced TpRu(CHCHCHCHPh)(CO)(PPh3). The later complex was also produced when TpRu(CHCHCHO)(CO)(PPh3) was treated with PhCH2PPh3Cl/NaN(SiMe3)2. The bimetallic complex [TpRu(CO)(PPh3)]2(μ-CHCHCHCHC6H4CHCHCHCH) was obtained from the reaction of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and terephthaldicarboxaldehyde.  相似文献   

19.
[ReO(OEt)Cl2(PPh3)2] reacts with benzoylhydrazine in the presence of PPh3 and hydrochloric acid to give [N-benzoylhydrazido(3-)-O,N′]dichlorobis(triphenylphosphine) rhenium(V). The complex has been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The molecular orbital diagram has been calculated with density functional theory (DFT). The spin-allowed singlet-singlet electronic transitions of [ReCl22–N2COPh–N′,O)(PPh3)2] have been calculated with the time-dependent DFT method, and the UV-Vis spectrum of the title compound has been discussed on this basis.  相似文献   

20.
Cyclometallated Ru(II) complexes of the type [Ru(CO)(EPh3)2(L)] (E = P or As; L = tridentate hydrazone-derived ligand) have been obtained by refluxing an ethanolic solution of [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(AsPh3)3] with the hydrazone derivatives H2php (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-phenol), H2phm (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-6-methoxy-phenol) and H2phn (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-naphthalen-1-ol). The formation of stable cyclometallated complexes has been authenticated by single crystal X-ray structure determination of two of the complexes, and the mechanism of C–H activation is discussed in detail. The spectral (IR, UV–Vis and 1H NMR) and electrochemical data for all the complexes are reported. Electrochemistry shows a substantial variation in the metal redox potentials with regard to the electronic nature of the substituents present in the hydrazone derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号