首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The EXAFS and XANES spectra of the solid complex Bi(tu)6(ClO4)3 (1) (tu is thiourea) and the solutions 0.1 M Bi(ClO4)3 + 1.8 M tu + 1 M HClO4 (2) and 0.05 M Bi(ClO4)3 + 1.5 M tu + 1 M HClO4 (3) were recorded. For solid [Bi(tu)6](ClO4)3, it was found that the first coordination shell of the Bi atom contains six sulfur atoms at distances of ~2.7–2.9 Å. It was assumed that binuclear bismuth complexes with Bi-S distances of ~2.8 and ~3.3 Å formed in Bi(ClO4)3 + (tu) + HClO4 solutions.  相似文献   

2.
A preliminary EXAFS study is reported of precursors of homogeneous hydrogenation catalysts obtained by addition of AlEt3 to nickel or cobalt octoate solutions in benzene. For a given nickel octoate solution studied before reduction, monodentate coordination of the nickel cations to at least four carboxylic anions was established and accurate Ni...O1, Ni...C1 distances (i.e. 2.06±0.01 Å, 3.01±0.02 Å) were determined. The spectra of the reduced solutions are however clearly dominated by intense Ni*...Ni or Co*...Co signals at distances comparable to the relevant distances of the bulk metal, and thus suggest the presence of rather disordered, amorphous-like metal clusters. Strong evidence is also produced in favour of additional metal...carbon bonds which were often assumed to play an important role in the catalytic activity of these or related solutions.  相似文献   

3.
The molecular structure of tris-2,2,6,6-tetramethyl-heptane-3,5-dione indium, or In(thd)3, has been determined by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both the DFT calculations and the GED data collected at 387(8) K indicate that the molecules have D 3 symmetry with a distorted anti-prismatic InO6 coordination geometry. According to GED refinements, the twist angle θ, i.e. the angle of rotation of the upper and lower O3 triangles in opposite directions relative to their positions in a regular prism is θ = ±24.9(1.2)° and the bond distances (r h1) in the chelate ring are In–O = 2.127(4) Å, C–O = 1.268(3) Å and C–C = 1.411(3) Å, respectively. The DFT calculations yielded structure parameters in close agreement with those found experimentally.  相似文献   

4.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

5.
The bismuth tris(triorganosilanolates) [Bi(OSiR3)3] ( 1 , R = Me; 2 , R = Et; 3 , R = iPr) were prepared by reaction of R3SiOH with [Bi(OtBu)3]. Compound 1 crystallizes in the triclinic space group with Z = 2 and the lattice constants a = 10.323(1) Å, b = 13.805(1) Å, c = 21.096(1) Å and α = 91.871(4)°, β = 94.639(3)°, γ = 110.802(3)°. In the solid state compound 1 is a trimer as result of weak intermolecular bismuth‐oxygen interactions with Bi–O distances in the range 2.686(6)–3.227(3) Å. The coordination at the bismuth atoms Bi(1) and Bi(3) is best described as 3 + 2 coordination whereas Bi(2) shows a 3 + 3 coordination. The intramolecular Bi–O distances fall in the range 2.041(3)–2.119(3) Å. Compound 3 crystallizes in the orthorhombic space group Pbcm with Z = 4 and the lattice constants a = 7.201(1) Å, b = 23.367(5) Å and c = 20.893(1) Å, whereas the triethylsilyl‐derivative 2 is liquid. In contrast to [Bi(OSiMe3)3] ( 1 ) compound 3 is monomeric in the solid state, but shows similar intramolecular Bi–O distances in the range 1.998(2)–2.065(5) Å. The bismuth silanolates are highly soluble in common organic solvents and strongly moisture sensitive. Compound 1 shows the lowest thermal stability.  相似文献   

6.
The structures of the solvated zinc ion and the solvated zinc–iodide complexes in methanol solution have been determined by EXAFS. The zinc ion is six-coordinated in an octahedral fashion with a mean Zn–O bond distance of 2.071(4) Å. According to the stability constants of the zinc–iodide system in methanol solution the first complex, ZnI+, is suppressed, which may indicate that a coordination change takes place at this step. On the other hand, the second complex, ZnI2, predominates at excess of iodide. The methanol solvated ZnI2 complex has a tetrahedral structure with mean Zn–I and Zn–O bond distances of 2.55(1) and 1.99(1) Å, respectively. The mean Zn–I bond distance in a solution containing a maximal content of ZnI+, ca. 12%, strongly indicates that the first complex also has a tetrahedral structure.  相似文献   

7.
The structure and complex formation of concentrated aqueous gallium(III) bromide (GaBr3) solutions have been investigated over a temperature range 80–333 K by Raman spectroscopy, X-ray absorption fine structure (XAFS), and X-ray diffraction. The Raman spectra obtained at various [Br?]/[Ga3+] molar ratios and temperatures have shown that complex formation between Ga3+ and Br? occurs as a predominant species, with [GaBr4]? at [Ga3+] as high as 1~2 M (M = mol?dm ?3) and [Br?]/[Ga3+] ratios > ~2, and that cooling of the solutions favors the formation of the aqua Ga3+. The intermediate species were not seen in the Raman spectra. The XAFS data have revealed that the aqua complex has a sixfold coordination as [Ga(H2O)6]3+ with a Ga3+–H2O distance of (1.96 ± 0.02) Å, whereas the [GaBr4]? complex has a Ga3+–Br? distance of (2.33± 0.02) Å, and that vitrification of the aqueous GaBr3 solution at liquid nitrogen temperature shifts the equilibrium toward the aqua complex. The X-ray diffraction data at different subzero temperatures have shown a tendency of decreasing Ga3+–Br? and increasing Ga3+–H2O interactions with lowering temperature, confirming the preference of aqua Ga3+ in the supercooled liquid state as well as in the glassy state. The Ga3+–H2O distance of ~1.8 Å for the tetrahedral coordination was found in a 2.01 M gallium(III) bromide solution with a [Br?]/[Ga3+] ratio of 3.7 and gradually increased to a value of 1.92 Å for octahedral geometry with decreasing temperature, suggesting that equilibrium shifts from [GaBr4]? to [Ga(H2O)6]3+ through intermediate species, [GaBr n ](3?n)+ (n = 2 and 3). The Ga3+–Br? and Br?–Br? distances within [GaBr4]? with an almost tetrahedral symmetry are (2.35± 0.02) and (3.82± 0.03) Å, respectively. The Ga3+ has the second hydration shell at (4.03± 0.03) Å and the hydration of Br? is characterized with a Br?–H2O distance of (3.35± 0.02) Å at all temperatures investigated.  相似文献   

8.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

9.
Microscopic structures of Zn(II) adsorbed on anatase TiO2 surface with different densities were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculation. Quantitative analysis of the EXAFS spectra showed that microscopic structures of Zn(II) were fourfold coordinated complexes, and different microscopic structures were present of the solid surface. Three modes of corner–corner/sharing-corner/sharing-edge adsorptions on anatase (101) face cluster were calculated by the DFT method. The results from DFT method were consistent with the EXAFS fittings. The optimized Zn–O average distance of the Zn–O tetrahedron was determined as about 2.00 Å. The Zn–Ti distance was 3.69 Å for the corner–corner adsorption, 3.35 Å for the sharing-corner adsorption, and 3.02 Å for the sharing-edge adsorption. According to the adsorption energies calculated by the DFT method, the microscopic structure of corner–corner adsorption was less stable than those of the other adsorption modes. With the increasing adsorption density, the corner–corner adsorption mode would be enhanced more intensively than the other adsorption modes.  相似文献   

10.
A complex of thiourea and bismuth trichloride has been synthesized. Its composition is Bi3Cl9[SC(NH2)2]7. Crystallographic data are a = 7.141(2) Å, b = 8.820(3) Å, c = 16.365(5) Å, α = 99.389(4)°, β = 95.422(4)°, γ = 106.177(4)°, triclinic system. There are the mononuclear anion [BiCl5SC(NH2)2]2? and the dinuclear cation {Bi2Cl4[SC(NH2)2]6}2+ with the Bi–Cl–Bi bridge bonds in the complex. The electric conductance of the absolute methanol solution contained the complex indicates that the complex is an ionic compound. Raman spectra indicate that the bismuth ion is coordinated by the sulfur atoms of the thiourea. The thermal analysis verifies the structure of complex. The TG–MASS curves show the structure rearrangement in the complex at about 118 °C. The DSC curves and calculation means that the structure rearrangement is irreversible.  相似文献   

11.
《Polyhedron》1999,18(21):2775-2780
Triclinic crystals of bismuth(III) triple-decker phthalocyanine, Bi2Pc3, Pc=C32H16N82−, were grown directly by the reaction of Bi2Se3 with 1,2-dicyanobenzene at 220°C. The Bi2Pc3 molecule is centrosymmetric with the bismuth atoms located closer to the peripheral phthalocyaninato(2−) rings than to the central ring. Each bismuth(III) ion is connected by four N-isoindole atoms to the peripheral and by four N-isoindole to the central Pc ring with average distances of 2.333 and 2.747 Å, respectively. This indicates a stronger connection of Bi(III) to the peripheral saucer-shaped macrocyclic rings than to the central rings. The neighbouring phthalocyaninato(2−) moieties in the Bi2Pc3 molecule are separated by a distance of 3.101(5) Å. The central Pc ring is rotated by 36.4° with respect to the peripheral ones. Differences in Bi–N bond lengths are a result of interaction of the bismuth ion with peripheral and central rings as well as the repulsion forces between two bismuth ions in the same Bi2Pc3 molecule, which are separated by a distance of 3.839(2) Å. The crystal packing is characterized by a distance of 3.56 Å between Pc rings of neighbouring Bi2Pc3 molecules.  相似文献   

12.
Crystal structure of {[Mn(salicylaldoximeH)(salicylaldoxime)]4} · 3CHCl3 1 formed by the interaction of MnCl2 · 4H2O and salicylaldoxime in a 1:1 ratio is described. The compound crystallizes in the orthorhombic space group Pbca (No 61) with the lattice parameters; a = 27.769 (3), b = 22.672 (2), c = 21.650 (2) Å, V = 13630 (2) Å3, Z = 8, R 1 = 0.0776, wR 2 = 0.2356, S = 1.164. The cluster with four Mn (III) centers formed by four terminal and four bridging salicylaldoxime ligands results in a central rotating wheel-like core with the Mn–Mn separation varying from 3.531 to 3.576 Å and with the diagonal distances being 4.156–4.165 Å. Four intramolecular H-bonds between a terminal oxime (NOH) group and the adjacent phenolate oxygen atom of another ligand stabilize the structure of the cluster. Spectral, magnetic, and cyclic voltammetry studies corroborate a stable Mn (III) tetramer.  相似文献   

13.
Tri-p-tolylbismuth perchlorate (1) and μ-oxo-bis[(perchlorato)tri-p-tolylbismuth] (2) have been synthesized by the reaction between tri-p-tolylbismuth dibromide and silver perchlorate and its hydrate. The complexes have been studied by chemical analysis, IR spectroscopy, and X-ray diffraction. Complex 1 is triclinic, space group Pī, Z = 4, a =10.7271(9) Å, b = 13.5585(11) Å, c = 18.1592(13) Å, α = 110.867(3)°, β = 94.944(3)°, γ = 96.888(3)°, V = 2426.3(3) Å3, ρcalcd = 1.865 g/cm3; complex 2 crystallizes in trigonal symmetry, space group R\(\bar 3\), a = 13.1157(2) Å, c = 22.1959(2) Å, γ = 120°, V = 3306.64(8) Å3, ρcalcd = 1.777 g/cm3. The bismuth atoms in the molecular structure of complex 1 have a distorted trigonal bipyramidal coordination to the apically arranged oxygen atoms of perchlorate ions (Bi–C, 2.180(5)–2.201(5) Å; Bi–O, 2.324(4)–2.355(4) Å; OBiO axial angles, 170.1(1)°, 174.5(1)°). The structure of complex 2 contains binuclear [p-Tol3Bi(ClO4)]2O molecules (Bi–O, 2.371(15), 1.9107(7) Å; OBiO axial angle, 180.0°).  相似文献   

14.
Variable temperature (?55 to ?100 °C) studies of the infrared spectra (4,000–400 cm?1) of chlorocyclobutane, c-C4H7Cl, dissolved in liquid xenon have been carried out. The infrared spectrum (4,000–100 cm–1) of the gas has also been recorded. For this puckered ring molecule the enthalpy difference between the more stable equatorial conformer and the axial form, has been determined to be 361 ± 17 cm?1 (4.32 ± 0.20 kJ/mol). This stability order is consistent with that predicted by ab initio calculations but the ?H is much lower than the average energy value of 646 ± 73 cm?1 obtained from the MP2 ab initio calculations or 611 ± 28 cm?1 from the B3LYP density functional theory calculations. The percentage of the axial conformer present at ambient temperature is estimated to be 15 ± 1%. By utilizing previously reported microwave rotational constants for both conformers combined with ab initio MP2(full)/6–311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom structural parameters for the equatorial conformer are: the distances C–Cl = 1.783(5), C1–C4 = 1.539(3), C4–C6 = 1.558(3) Å, and angles ∠C6C4C1 = 86.9(5), ∠C4C1C5 = 89.7(5)°, and for the axial conformer are: the distances C–Cl = 1.803(5), C1–C4 = 1.547(3), C4–C6 = 1.557(3) Å, and angles ∠C6C4C1 = 86.3(5), ∠C4C1C5 = 88.9(5) and the puckering angles for the equatorial and axial conformers are 30.7(5)° and 22.3(5)°, respectively. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

15.
A bismuth(III) complex of N-methylthiourea (Mtu, C2H6N2S) [Bi(C2H6N2S)6](ClO4)3 has been synthesized, and its crystal structure has been determined. The structure is built of octahedral Bi(Mtu) 6 3+ cations and ClO 4 ? anions. Sulfur atoms are coordinated to bismuth(III) (at axis 2) at octahedron vertices (Bi-S, 2.7670(8), 2.8142(8), and 2.8315(8) Å); angles SBiS vary from 82.26(3)° to 96.13(2)°. The presence of amino groups and oxygen atoms in the structure results in the emergence of numerous hydrogen bonds (HBs). All H atoms of amino groups are involved in HBs; one of them is bound to the sulfur atom. One of the oxygen atoms of ClO 4 ? anions does not participate in HBs.  相似文献   

16.
A new N-containing ligand, 1,4,7,10-tetra-(4-nitrobenzyl)-1,4,7,10-tetraazacyclo-dodecane (L), was synthesized, and its structure was determined by 1H NMR, high resolution mass spectrometry and X-ray diffraction. L crystallized in the monoclinic system (P21/n space group; a = 7.7895(2) Å, b = 22.9592(5) Å, c = 9.9204(2) Å; α = 90.00°, β = 105.481(3)°, γ = 90.00°; Z = 2). Slope analysis and the continuous variation method demonstrated that 1:2 complexes between Th(IV) and L are formed; furthermore, the XPS analysis suggested that two oxygen atoms might be provided by two water molecules and that eight nitrogen atoms might be provided by two L molecules to form a ten-coordinate compound with Th(IV). The extraction equilibrium constant for the complex formation between Th(IV) and L was logK ex = 6.95 ± 0.15 (25 °C), and the Gibbs free energy, ΔG o (25 °C), of the 1:2 Th–L complex in dichloromethane was ?39.56 kJ/mol. The L ligand in dichloromethane only slightly extracted Th(IV) from HNO3 solution at pH = 1–3; however, an extraction efficiency of E = 94.9 ± 0.3 % was observed at pH = 4.63. The selectivity of L for the Th(IV) cation over other cations (i.e., Cs(I), Sr(II), Y(III), La(III), Sm(III), Eu(III), U(VI), and 241Am(III)) was evaluated. Furthermore, the stripping experiments showed that the stripping agent (0.5 mol/L Na2CO3 + 0.1 mol/L EDTA) could provide an optimal condition for stripping thorium, and thorium recovery was up to 91.6 ± 0.1 %.  相似文献   

17.
The molecular structure of FBrO3 has been studied by gas-phase electron diffraction. Least-squares refinements of the molecular geometry using fixed spectroscopic amplitudes revealed two geometrical minima. Initially, the amplitudes employed were derived from diagonal force fields obtained by spectroscopic least-squares refinements to fit observed and calculated wave numbers; for each geometry there are two spectroscopic minima. In the lowest geometrical minimum the wave number agreement is poor, however, the introduction of the ∠OBrO/∠FBrO interaction force constant removed the discrepancies; the resulting force field is F(Br-O) = 6.92 ± 0.02 mdyn Å?1F(Br-F) = 3.22 ± 0.03 mdyn Å?1, F(∠OBrO) = 1.06 ± 0.02 mdyn Å, F(∠FBrO) = 0.81 ± 0.03 mdyn Å, F(∠OBrO/∠FBrO) = ?0.19 ± 0.02 mdyn Å. In the corresponding geometrical minimum rg(Br-O) = 1.582 ± 0.001 Å, rg(Br-F) = 1.708 ± 0.003 Å, rα(∠OBrO) = 114.9 ± 0.3°, rα(∠FBrO) = 103.3 ± 0.3°. Perpendicular amplitude correction coefficients, calculated for each force field employed, were used throughout to relate the interatomic distances through the rα-structure. The geometries of the rαo- and re-structures are estimated.  相似文献   

18.
Technetium dimers Tc2(O2CCH3)4X2 (X =?Cl, Br) were synthesized and studied by X-ray Absorption Fine Structure spectroscopy (XAFS). EXAFS analysis gave for Tc2(O2CCH3)4Cl2: d Tc-Tc =?2.18(1) Å, d Tc–Cl =?2.43(1) Å and for Tc2(O2CCH3)4Br2: d Tc–Tc =?2.19(1) Å, d Tc-Br =?2.63(1) Å. The Tc Tc separations are in agreement with Raman studies while the Tc–X distances are somewhat larger. Comparison with other Tc(III) quadruply bonded dimers indicates that the carboxylate compounds exhibit larger Tc–Tc separations. The effect of the terminal ligand (nature and position) on the Tc–Tc separation is discussed.  相似文献   

19.
Abstract

The manganese complexes, [Mn(III)(Hvanpa)2(NCS)] (1) and [Mn(III)(Hvanpa)2]Cl · H2O (2), have been prepared and the crystal structure of complex 2 determined using X-ray crystallography. The monomeric complex has a six-coordinate octahedral geometry. The complex crystallizes in the triclinic space group P-1 with a = 11.446(5) Å, b = 12.782(6) Å, c = 9.023(3) Å, α = 93.92(3)°, β = 97.05(3)°, γ = 65.42(2)°, V = 1169.0(9) Å3 and Z = 2. The Mn-O and Mn-N distances in the equatorial plane are in agreement with those found for other manganese (III) Schiff-base complexes. In the axial direction, the Mn-O distances of 2.256(3) and 2.236(3) Å, respectively, are about 0.4 Å longer than those in the equatorial plane due to Jahn-Teller distortion at the d 4 manganese(III) center. In the crystal, each chloride ion is linked through hydrogen bonding with two hydrogen atoms from the coordinated hydroxyl groups at the apical site. The lattice water molecules also interact with the phenolic oxygen atoms through hydrogen bonding.  相似文献   

20.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号