首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
4-chloro,3-methyl,5-phenylisoxazole copper(II) complexes of the type Cu(L)X2(X = Cl, Br, NO3) and Cu(L)2(ClO4)2 have been prepared and studied by the IR, electronic, paramagnetic resonance spectroscopy and molar conductivity values. The ligand acts as monodentate N-bonded except to the nitrate derivative where this behaves as bridging bidentate. The halide complexes are tetrahedral, while the nitrate and perchlorate derivatives are square planar.  相似文献   

3.
Transition Metal Chemistry - In this study, Ni(II) and Co(II) complexes [Co(H2O)2L2] (1), [Ni(H2O)2L2] (2), [Co(phen)L2] (3), [Ni(phen)L2]·2H2O·EtOH (4·2H2O), and...  相似文献   

4.
Some 1,1′‐(dicarbohydrazono) ferrocenes have been prepared by condensing 1,1′‐diacetylferrocene with either 2‐furoic hydrazide, 2‐thiophenecarboxylic hydrazide or 2‐salicylic hydrazide. All the ligands synthesized were characterized by IR and NMR spectroscopy and elemental analysis data (carbon, hydrogen, nitrogen) and then were used as ligands to react with cobalt(II), copper(II), nickel(II) and zinc(II) metals as chlorides to afford metal complexes having the general formula M(L)Cl2. IR and electronic spectral data, magnetic moment and elemental analyses were used in the structural investigation of the metal complexes synthesized. The ligands synthesized and their metal(II) complexes have been screened for their in vitro antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal than the uncomplexed ligands. However, the potency of all the ligands synthesized and their metal complexes was lower than that of the standard drugs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A brief account of the synthesis, spectroscopic characterization and the antimicrobial (bacterial and fungal) behaviour of bis(diorganodithiocarbamato)organodithiocarbonatobismuth(III) complexes is presented. The reaction of bis(diorganodithiocarbamato)bismuth(III) chloride with potassium organodithiocarbonate in equimolar ratio yielded the corresponding mixed derivatives of the type [R′2NCS2]2BiS2COR [where, R′ = CH3 and C2H5; R = Et, Prn, Pri, Bun and Bui]. These have been characterized by molecular weight determinations, melting points (only solid complexes) and elemental (C, H, N, S and Bi) analysis as well as spectral IR and NMR [1H and 13C] studies. The antibacterial and antifungal activities of the free ligands and their bismuth complexes were found in vitro by the disc diffusion method. The complexes showed good antibacterial and antifungal effect on some selected bacterial and fungal strains. The antimicrobial activities of two standard antibiotics (Chloroamphenicol and Terbinafin) were also measured and compared with these complexes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A new carboxylic acid, 2‐{[5‐(2‐nitrophenyl)furan‐2‐yl]methyleneamino}benzoic acid (HOBZ), has been produced by reacting 5‐(2‐nitrophenyl)furfural with 2‐aminobenzoic acid. Reactions of NaOBZ with organotin chlorides led to formation of [Me3Sn(OBZ)] ( 1 ), [Bu3Sn(OBZ)] ( 2 ), [Me2Sn(OBZ)2] ( 3 ) and [Bu2Sn(OBZ)2] ( 4 ). Complexes 1 , 2 , 3 , 4 have been characterized using elemental analyses and infrared, 1H NMR, 13C NMR, 119Sn NMR and 119Sn Mössbauer spectroscopies. In the solid state, the OBZ ligands might coordinate to tin in an anisobidentate fashion via the carboxylate group. The in vitro antimicrobial activity of all compounds has been screened against the following fungi: Aspergillus niger, A. flavus, A. parasiticus, Penicillium citrinum, Candida dubliniensis, C. lusitaniae, C. albicans, C. tropicalis, C. parapsilosis and C. glabrata; and against the following bacteria: Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Streptococcus sanguinis, Escherichia coli, Citrobacter frendii, Salmonella typhimurium and Pseudomonas aeruginosa. Complexes 2 and 4 exhibited higher biocide activity in comparison to 1 and 3 and to the control drugs nystatin and miconazole nitrate for the yeasts, and chloramphenicol and ampicillin for the bacteria. The biological activity of 2 was superior to that of 4 . In addition, the toxicity of HOBZ, NaOBz and 1 , 2 , 3 , 4 were determined using Chlorella vulgaris, revealing low toxicity of the complexes at MIC50 concentrations. We also performed cell viability studies, using XTT assay, displaying no change in the mitochondrial function after 2–4 h of exposure of the microorganism to the complexes at MIC50 concentrations. The butyl‐containing complexes 2 and 4 display greater lipophilicities than do the methyl analogues 1 and 3 , thereby endowing 2 and 4 with superior abilities to cross the microbe cell membrane, the possible mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Three nickel(II) thiosemicarbazone complexes have been synthesized and characterized by spectroscopic and physicochemical techniques. The molecular structures of two of the complexes have been determined by single-crystal X-ray diffraction studies. In both of these complexes, the nickel center is coordinated by two tridentate ligands in a meridional fashion using C=S, C=N and neutral hydroxyl OH donors. The ligand is bound to nickel in its thione form in all three complexes. The synthesized compounds were tested for antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi. Additionally, all the compounds were screened for antituberculosis activity. Several complex/organism combinations returned an MIC value of 0.8 μg/mL or better, which is almost 8 times more active than the standard (streptomycin, 6.25 μg/mL).  相似文献   

8.
Complexes of copper(II), nickel(II), cobalt(II), and zinc(II) with 2-[2-(6-methylbenzothiazolyl)azo]-5-dimethylaminobenzoic acid have been prepared and characterized by elemental analysis, vibrational spectra, magnetic susceptibility measurements, conductance measurements and e.p.r. spectra. Stability constants have been evaluated potentiometrically. Electronic spectra, magnetic susceptibility measurements and molecular modeling studies support a distorted square planar geometry around the metal ions. Vibrational spectra indicate the coordination of the azo group, nitrogen of benzothiazole, the carboxylate anion and the acetate ion on complexation with the metal ion. All complexes are found to be monomers. The stability of the complexes follow the order: copper(II) > nickel(II) > cobalt(II) > zinc(II).  相似文献   

9.
New diorganotin(IV) complexes [Me2Sn(2-ClC6H4CH2CONHO)2] (1) and [n-Bu2Sn(2-ClC6H4CH2CONHO)2] (2) have been synthesized by reactions of Me2SnCl2 and n-Bu2SnCl2 with potassium 2-chloridophenylacetohydroxamate (2-ClPhAHK = 2-ClC6H4CH2CONHOK) in 1:2 molar ratio in MeOH+C6H6 solvent medium and characterized by elemental analyses, molar conductivity, molecular weight determinations and spectroscopic techniques (IR, 1H, 13C, and 119Sn NMR) and mass spectrometry. Bonding through carbonyl and hydroxamic oxygens (O,O coordination) and distorted-octahedral geometry around tin is proposed. The electrochemical behavior of 1 and 2 studied by cyclic voltammetry shows quasi-reversible reductions. Thermal behavior of 1 and 2 in N2 shows decomposition in one step affording SnO as the residue. The in vitro antimicrobial activity assay against pathogenic Gram-negative bacteria viz. Salmonella typhi, Escherichia coli; Gram-positive Bacillus cereus and Staphylococcus aureus and fungi Aspergillus niger and Alternaria alternata by MIC method revealed their significant antimicrobial potential relative to the respective standard Chloramphenicol and Nystatin drugs.  相似文献   

10.
New alpha-ketoglutaric acid thiosemicarbazone (H(3)ct) derivatives and their copper complexes were synthesized and characterized by analytical and spectroscopic (IR and NMR) methods. For two of the ligands, Me-H(3)ct and Allyl-H(3)ct, and for a complex, [Cu(Me-Hct)(OH(2))](n) x 2nH(2)O, the X-ray structures were also determined. In the latter the copper atom shows a 4 + 1 pyramidal coordination, a water oxygen appears in the apical position, and three of the basal positions are occupied by the SNO tridentate ligand and the fourth by a carboxylic oxygen of an adjacent molecule that gives rise to a polymeric chain. DNA binding constants were determined, and studies of thermal denaturation profiles and nuclease activity were also performed. Tests in vitro on human leukemia cell line U937 were carried out on cell growth inhibition, cell cycle, and apoptosis induction.  相似文献   

11.
A new series of Cu(II), Ni(II), and Co(II) complexes have been synthesized from 3-formylchromoniminopropylsilatrane (C19H24O5N2Si) (2) and 3-formylchromoniminopropyltriethoxysilane (1). Silatrane ligand (C19H24O5N2Si) (2) has been synthesized by the reaction between 3-aminopropyltriethoxysilane and 3-formylchromone followed by a treatment with triethanolamine. The nature of bonding and the geometry of the complexes have been deduced from elemental analyses, magnetic susceptibility, infrared, electronic, 1H NMR, 13C NMR, and ESR spectral studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square planar geometry for Cu(II) and Ni(II) and tetrahedral geometry for Co(II). The redox behavior of copper complexes was studied by cyclic voltammetry. The biological activity of the ligand and metal complexes has been studied on Klebsiella pneumoniae, Staphylococcus aureus, Escherichia Coli, and Bacillus subtilis by the well diffusion method using acetonitrile as solvent. The zone of inhibition values were measured at 37°C for 24 h. Antimicrobial screening tests show better results for the metal complexes than the ligand.  相似文献   

12.
Complexes of Cu(II) with bioactive carboxyamide ligands N',N'-bis(3-carboxy-1-oxoprop-2-enyl)2-amino-N-arylbenzamidine, N',N'-bis(3-carboxy-1-oxopropanyl)2-amino-N-arylbenzamidine and N',N'-bis(3-carboxy-1-oxophenelenyl)2-amino-N-arylbenzamidine have been synthesized and characterized by various physico-chemical techniques. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML complexes. Vibrational spectra indicate coordination of amide and carboxylate oxygen of the ligands along with water molecules. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for Cu(II) complexes. The EPR of the reported complex show g( parallel)>g( perpendicular)>2.0023 and G value within the range 2.08-4.49 are consistent with [Formula: see text] ground state in an octahedral geometry. The voltammogram of the copper(II) complex shows a quasi-reversible redox process and a simple one electron process assignable to the Cu(II)/Cu(I) couple. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. The bio-efficacy of the ligands and its copper complexes have been examined against the growth of bacteria and pathogenic fungi in vitro to evaluate their antimicrobial potential. The results indicate that the ligand and its metal complexes possess notable antimicrobial properties.  相似文献   

13.
Three new copper complexes and one cobalt complex with 5-(pyrazinyl)tetrazolate anion, (pyztz), as chelating bidentate ligand, were obtained by the reaction of pyrazinecarbonitrile with sodium azide in the presence of copper(II) nitrate or cobalt(II)chloride. Complexes of composition [Cu(pyztz)2(H2O)] (1) deep blue crystals, [Cu(pyztz)2(H2O)2] (2a) green crystals, [Co(pyztz)2(H2O)2] (2b) orange crystals, [Cu(pyztz)2(H2O)2] · (H2O) (3) blue crystals were obtained. The single crystal X-ray diffraction revealed that complex 1 has square pyramidal structure with one water molecule at apical and two pyrazine-tetrazolato ligands at basal sites, while structures of 2a, 2b and 3 consist of octahedrally coordinated metal ions, where two pyztz anions act as bidentate ligands via one of the pyrazine-N atoms and one of the tetrazole-N atoms in trans-positions and two trans water molecules. Complex 3 contains one extra lattice water molecule. Hydrogen bonds of the types O–H?O and O–H?N connect the mononuclear units to a three-dimensional network structure in 2 (a and b are isostructural) and 3. Although the H-bond patterns look complex it is shown that they can be related to the well-known three- and six-connected rutile net (rtl) in 2 and the four- and six-connected fsh-net in 3.  相似文献   

14.
The stoichiometric reaction of NiCl2·6H2O with sodium 4-imidazoleacetate Na(IA) in absolute MeOH yields blue crystals of Ni(IA)2·4H2O·2MeOH (1). This product decomposes rapidly in air, losing two MeOH molecules and producing Ni(IA)2·4H2O (2). Compound (1) when left in the mother liquor, slowly recrystallizes forming [Ni(IA)2(MeOH)2] (3), which is stable in air and suitable for single crystal X-ray diffraction studies. These crystals consist of slightly distorted octahedral coordination units in which the carboxylic oxygen, imidazole N3 nitrogen and the MeOH oxygen atoms act as coordination centers. The i.r. features, due to MeOH molecules, were employed to characterize the compounds studied. The reflectance spectrum of (3) was interpreted on the basis of octahedral and tetragonal symmetry of the NiO4N2 chromophore.  相似文献   

15.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Three new metal complexes, Cu(4-Hcba)2(4-cba)2(Py)2 (4-Hcba=4-cyanobenzoic acid) 1 and M[H(4-cba)2]2(Py)2 (M=Ni 2, Co 3), have been prepared by the treatment of 4-Hcba with the respective metal nitrate M(NO3)2 (M=Cu, Ni, Co) in the presence of pyridine (Py). Single-crystal X-ray diffraction analyses (3 is isostructural to 2) show that the obtained complexes are of isolated mononuclear and the metal atoms have distorted octahedral coordination environment. Two different types of intramolecular hydrogen bonds exist: asymmetrical O–HO for 1 and symmetrical OHO for 2 and 3. The crystal packing between the molecular complexes is controlled mainly by T-shaped C–Hπ interactions between pyridine and phenyl rings. Preliminary discussions on IR, UV–VIS and fluorescent spectra have also been carried out.  相似文献   

17.
A new series of antibacterial and antifungal amino acid derived Schiff bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR and electronic spectral measurements. The spectral data indicated the Schiff base ligands ( L 1– L 5) derived by condensation of salicylaldehyde with glycine, alanine, phenylalanine, methionine and cysteine, to act as tridentate towards divalent metal ions (cobalt, copper, nickel and zinc) via the azomethine‐N, deprotonated carboxyl group of the respective amino acid and deprotonated oxygen atom of salicylaldehyde by a stoichiometric reaction of M: L (1:2) to form complexes of the type K2[M( L )2] [where M = Co(II), Cu(II), Ni(II) and Zn(II)]. The magnetic moments and electronic spectral data suggested that all complexes have an octahedral geometry. Elemental analyses and NMR spectral data of the ligands and their Zn (II) complexes agree with their proposed structures. The synthesized ligands, along with their metal complexes, were screened for their in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram ‐ positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/antifungal against one or more species as compared with the uncomplexed Schiff base ligands. The brine shrimp bioassay was also carried out to study their in‐vitro cytotoxic properties. Only three compounds ( 2, 11 and 17 ) displayed potent cytotoxic activity as LD50 = 8.196 × 10?4, 7.315 × 10?4 and 5.599 × 10?4 M /ml respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Copper, nickel and cobalt complexes of Schiff-bases, obtained by condensation of 3-ammo-5-methylpyrazole with salicylaldehyde; 2,3-dilhydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5-dihydroxybenzaldehyde, and 2-hydroxynaphthaldehyde, were synthesized and characterized. Analytical data and electrical conductivity measurements indicate the formation of 1:1 and 1:2 complexes. Magnetic moments and spectral properties support Oh, Td, penta-coordinate and square planar structures for the complexes. T.g.a., d.t.g., d.t.a. and d.s.c. studies on the formed complexes show three and four decomposition steps. Complexes obtained by direct reaction between the metal salt and the corresponding Schiff-base have magnetic moments, stereochemistry and thermal properties which are different from their analogues obtained by template synthesis. Activation energies Ea and enthalpies ΔH, associated with thermal decomposition of the complexes, were also calculated. Some of the complexes have been tested for antimicrobial activity.  相似文献   

19.
Metal carboxylate complexes possess different carboxylate coordination modes, e.g. monodentate, bidentate, and bridging bidentate. Five Zn(II) complexes were prepared and characterized in order to examine their coordination modes in addition to their biological activity. The syntheses were started by preparation of [Zn(ibup)2(H2O)2] (1). Then, different nitrogen-donor ligands reacted with 1 to produce [Zn(ibup)2(2-ampy)2] (2), [Zn(ibup)(2-ammethylpy)] (3), [Zn(ibup)(2,2′-bipy)] (4), and [Zn2(ibup)4(2-methylampy)2] (5) (ibup = ibuprofen, 2-ampy = 2-aminopyridine, 2-ammethylpy = 2-aminomethylpyridine, 2,2′-bipy = 2,2′-bipyridine, 2-methylampy = 2-(methylamino)pyridine). IR, 1H NMR, 13C{1H}-NMR and UV–vis spectroscopies were used for characterization. The crystal structures of 2 and 5 were determined by single-crystal X-ray diffraction. Investigation of in vitro antibacterial activities for the complexes against Gram-positive (Micrococcus luteus, Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis) bacteria were done using agar well-diffusion method. Complex 1 showed antibacterial activity against Gram-positive bacteria. Complexes 2 and 3 did not exhibit antibacterial activity. Complex 4 showed antibacterial activity and was chosen for further studies to determine the inhibition zone diameter for different concentrations and to set the minimum inhibitory concentration. The antibacterial activity against most of the bacteria was minimized as a result of the complexation of zinc ibuprofen with 2,2′-bipy in 4.  相似文献   

20.
Using the X-ray structure of solid nitrosoguanidine (ngH), potential structures of its complex with aqueous nickel(II) were surmised. A single-crystal X-ray diffraction determination of the Ni(II) complex confirmed one of these configurations. The X-ray structural parameters were compared with the most stable gaseous configurations derived from ab initio-MO calculations. The lowest energy calculated configuration of the nickel(II) complex and the X-ray crystal structure are in excellent agreement. The neutral diamagnetic, planar, red-colored [bis(nitrosoguanidate)nickel(II)] complex, [Ni(ng)2]°, is nitrogen coordinated in the trans configuration. It is highly insoluble in all solvents investigated, and has essentially the same crystal symmetry and unit-cell dimensions as the free ligand. In ligand crystals, two molecules have four nitrogen atoms aligned in a plane such that they are suitable for coordination to a nickel ion (1.945, 2.064?Å), when it is at the 1/2,?1/2,?1/2 unit-cell position. Furthermore, the complexes stack, as in [Ni(dmg)2]°, placing the nickel ions in nearly perfect positions for weak metal–metal bonding between adjacent layers at the near optimum distance of 3.65(1)?Å. This results in a tight, linear macromolecule having low volatility and the extremely low solubility observed. As far as we are aware this is the first instance in which a ligand crystal structure is essentially the same as the complex it forms, with minor differences in bond distances, angles and torsion angles, and suggests some potentially unique properties and applications for this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号