首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Journal of Coordination Chemistry》2012,65(17-18):1603-1609
Reaction of K3[Fe(CN)6], NiCl2 and diethylenetriamine (dien) resulted in the formation of a cyanide-containing heterometallic compound [Ni(dien)2]2[Fe(CN)6]·4H2O 1. The structure consists of two octahedral [Ni(dien)2]2+ cations, one octahedral [Fe(CN)6]4? anion and four crystallization water molecules, which are held together by hydrogen-bonding interactions. Its TG curve exhibits two stages of mass loss. Compound 1 in DMF solutions has a very strong third-order non-linear optical (NLO) behavior with an absorption coefficient and refractive index α2?=?1.10?×?10?11?m?w?1, n 2?=??3.05?×?10?19?m2?w?1, respectively, and third-order NLO susceptibility χ(3) 4.34?×?10?13?esu.  相似文献   

2.
The compounds [(n‐Bu)4N]3[MoS4Ag3Cl4] ( 1 ) and [Et4N]3[WOS3Cu3I4] ( 2 ) were synthesized and characterized. Compound 1 crystallizes in the rhombohedral system, space group R3c with a = 17.194(1), b = 17.194(1), c = 39.194(3)Å, Z = 6, V = 10034.7(11)Å3. Compound 2 crystallizes in the rhombohedral system, space group R3c with a = 14.461(2), b = 14.461(2), c = 34.952(2)Å, Z = 6, V = 6329.9(13)Å3. The X‐ray crystallographic structure determinations show that these two cluster compounds consist of a slightly distorted cubic core. Nonlinear optical (NLO) properties of these two clusters were investigated by using Z‐scan techniques with an 8 ns pulsed laser at 532 nm; both clusters exhibit strong nonlinear optical absorption effect (effective α2 = 1.18 × 10—10 m · W—1 for 1 and 1.0 × 10—10 m · W—1 for 2 ).  相似文献   

3.
Abstract

The heterometallic polymeric cluster Na2[AlW3O4 (O2CEt)8]2 (1) has been prepared by reaction of W(CO)6 and NaWO4·2H2O with AlCl3 at 120°C in propionic anhydride and characterized by X-ray crystallography, with the following crystal data: triclinic, space group P1, a = 12.205(5), b = 13.032(4), c = 13.925(3) Å, α = 90.21(3)°, β = 109.53(5)°, γ = 117.26(6)°, V = 1822.8(1)Å3, Z = 1, R = 0.038 and Rw = 0.101. The structure consists of two triangular [W3O4(O2CEt)8]4? cluster unit, which act as polydenate ligands to link Al3+ and Na+ ions forming a one–dimensional chain structure. IR spectra show characteristic [W3O4]4+ bands at 746–815 cm?1. Thermal analysis reveals that the complex is air stable up to 250°C. Cluster 1 decomposes in hot aqueous 2 M HCl solution to produce discrete [W3O4]4+ units.  相似文献   

4.
Me3NO activation of the methylidyne-bridged cluster HRu3(CO)10(μ-COMe) (1) in the presence of the unsaturated diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) furnishes the bma-substituted cluster HRu3(CO)8(bma)(μ-COMe) (2) and the diphenylphosphine-substituted cluster HRu3(CO)8(Ph2PH)[μ-PPh2C=CC(O)OC(O)] (3) as the major and minor products, respectively. The 1H and 31P NMR data indicate that the bma ligand in cluster 2 is chelated to one of the ruthenium atoms that is bridged by the hydride and methylidyne ligands. Cluster 3 has been fully characterized in solution by IR and NMR spectroscopies, and the solid-state structure determined by X-ray crystallography. 3 crystallizes in the monoclinic space P21, a?=?12.1467(7)?Å, b?=?19.284(1)?Å, c?=?16.867(1)?Å, β?=?109.639(6)°, V?=?3721.0(4)?Å3, Z?=?4, and dcalcd?=?1.774?g?cm?3; R?=?0.0325, R w?=?0.0383 for 3518 reflections with I?>?3σ(I). The X-ray data confirm that one of the P–C(maleic anhydride) bonds of the bma ligand has been cleaved and that cluster 3 contains Ph2PH and μ-PPh2C=CC(O)OC(O) ligands, the latter which functions as a face-capping ligand to all three ruthenium atoms. Control experiments indicate that cluster 2 does not function as a precursor to cluster 3 under the employed reaction conditions.  相似文献   

5.
Three coordination polymers of Robson-type macrocycles, {[Cu4L1(4,4′-bipy)2]·4ClO4·H2O} (1), {[Cu4L2(4,4′-bipy)4]·2CH3CN·4ClO4·2H2O} (2), and {[Zn2L2(4,4′-bipy)2]·(ClO4)2} (3) (where H2L1 and H2L2 are the [2?+?2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-methylphenol and 2,6-diformyl-4-fluorophenol, respectively), have been synthesized and characterized. Magnetic susceptibility was measured for 1 and 2 from 2 to 300?K. The optimized magnetic data were J?=?–368.5?cm?1, J′?=?40.5?cm?1 with R?=?1.69?×?10?6 for 1 and J?=?–291.22?cm?1, J′?=?83.74?cm?1, ρ = 0.00168 with R?=?1.8?×?10?11 for 2, respectively. The data reveal strong antiferromagnetic interactions between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction between the Cu(II) ions in two adjacent macrocyclic units for 1 and 2.  相似文献   

6.
A 3-D Cu(I)–CN–triazolate hybrid coordination polymer, {Cu9(NH2-BPT)2(BPT)2(CN)7}n (1) (NH2-BPT = 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole, BPT = 3,5-bis(3-pyridyl)-1,2,4-triazole), has been synthesized via self-assembly of NH2-BPT, CuCN, and K3Fe(CN)6 under hydrothermal conditions. Single-crystal X-ray diffraction data show that four of the five independent copper centers in 1 have a three-coordinated trigonal coordination geometry, and the remaining copper center has a two-coordinated linear geometry. Three Cu ions are linked by one cisoid-BPT and two CN? to form a 16-membered ring subunit, which is joined by the two-coordinate copper center via the triazole N(4)-position to generate an unprecedented [Cu7(BPT)2(CN)4] hybrid heptanuclear cluster. Each heptanuclear motif is linked to two adjacent [Cu7] clusters through four CN? anions, and further to four [Cu–CN–Cu] binuclear clusters through two transoid-NH2-BPT ligands. Each of these [Cu–CN–Cu] units is linked to four neighboring heptanuclear motifs. The overall geometry is a 3-D (4,6)-connected topological framework with Schläfli symbol of (44?×?62)(44?×?610?×?8). Compound 1 also exhibits high thermal stability and strong green fluorescence emission at 536?nm in the solid state.  相似文献   

7.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

8.
Short-range interactions between chain units of random copolymers in solution may be influenced by the composition or precisely by the distribution of sequence lengths of the same monomer units. Steric factors were derived for random copolymers of styrene and acrylonitrile with different compositions from the relation between the limiting viscosity number and the molecular weight. Mark-Houwink relations were obtained in methyl ethyl ketone (MEK) or in N,N′-dimethylformamide (DMF) at 30°C. for random copolymers containing 0.383 (Co-1) and 0.626 (Co-2) mole fraction of acrylonitrile, the expressions are: [η] = 3.6 X 10?4 M w0.62, for Co-1 in MEK; [η] = 5.3 X 10?4 M w0.61, for Co-2 in MEK; [η] = 1.2 × 10?4M w0.77 for Co-2 in DMF. With the Stockmayer-Fixman expression, these correlations become, respectively: [η]/M1/2 = 1.24 × 10?3 + 8.0 × 10?7 M1/2; and [η]/M1/2 = 1.70 × 10?3 + 6.3 × 10?7 M1/2; and [η]/M1/2 = 1.68 × 10?3 + 31.3 × 10?7 M1/2. From the unperturbed mean-square end-to-end distances, 〈L20, determined from the first terms of the latter expressions, together with 〈L20f calculated by assuming the completely free rotation, gives the steric factor σ = (〈L20/〈L20f)1/2 as 2.25 ± 0.05 for Co-1, and 2.31 ± 0.10 for Co-2. These values of σ are close to those for polystyrene (σ = 2.22 ± 0.05) and for polyacrylonitrile (σ = 2.20 ± 0.05). Therefore, it is concluded that the dimensions of random copolymers of styrene and acrylonitrile in solution are not significantly influenced by the composition. In other words, the unperturbed dimensions are not affected by a change in the alternation tendency between styrene units with phenyl side groups having a large molar volume and acrylonitrile units with nitrile groups responsible for the electrostatic interactions. On the other hand, the long-range interactions reflect the effect of sequence length. The Huggins constant and the second virial coefficient obtained from the light-scattering measurements have optimum values at about 0.5 mole fraction of acrylonitrile, where the greatest tendency for alternation seems to exist.  相似文献   

9.
The rate constants for the gas‐phase reactions of ground‐state oxygen atoms with CF2?CFCl (1), (E/Z)‐CFCl?CFCl (2), CFCl?CH2 (3), and (E/Z)‐CFH?CHCl (4) have been measured directly using a discharge flow tube coupled to a chemiluminescence detection system. The experiments were carried out under pseudo‐first‐order conditions with [O3P)]0 ? [ethene]0. The temperature dependences of the reactions were studied for the first time in the range 298–359 K. The proposed Arrhenius expressions (in units of cm3 molecule?1 s?1) were k1 = (1.07 ± 0.32) × 10?11 exp{?(8000±1600)/RT}, k2 = (0.56 ± 0.10) × 10?11 exp{?(8700±500)/RT}, k3 = (4.23 ± 1.25) × 10?11 exp{?(12,700 ± 800)/RT}, and k4 = (1.13 ± 0.62) × 10?11 exp{?(10,500 ± 1500)/RT}. All the rate coefficients display a positive temperature dependence, which highlights the importance of the irreversibility of the addition mechanism for these reactions. Halogen substitution in the ethene is discussed in terms of reactivity with O(3P). © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 763–769, 2005  相似文献   

10.
Nest‐shaped cluster [CuBr(bpy)2][MoOS3Cu3Br2(bpy)] was synthesized by the treatment of (NH4)2 MOO2S2, CuBr and Et4NBr with bpy (2,2′‐bipyridyl) in CH3CN. Its structure has been characterized by X‐ray diffraction; monoclinic, space group P21/n ‐ with a = l.0092(4), b = 2.6347(7), c = 1.4087(3) nm, β = 91.744(9)°, V = 3.7438 nm3, Z=4, and final R = 0.051, Rw = 0.053. It consists of two parts: nest‐shaped structural unit [MoOS3Cu3Br2(bpy)] and complex ion [CuBr(bpy)2]+. We determined its third‐order nonlinear optical (NLO) properties with a 7‐ns pulsed laser at 532 nm. The duster exhibits strong NLO refractive behavior, its third‐order susceptibility χ(3) was calculated to be 2.7 · 10?11 esu in a 7.8 · 10?4 g/cm3 DMF solution. The value is comparable to those of inorganic dusters.  相似文献   

11.
Reactions of [NH4]2[MS4](M = Mo,W), CuX(X = Br, I) and PPh3 in the solid state produced four mixed-metal sulfur containing clusters {Cu3MS3X}(PPh3)3S(M = Mo, W; X = Br, I), two of which (1: M = Mo, X = I; 2: M = W, X = Br) were structurally determined. Crystals of 1 and 2 are triclinic, space group P1 (1: a = 11.895(3), b = 13.107(1), c = 20.473(2)Å, α = 74.95(6), β = 84.87(8), γ = 64.27(7)°, Z=2, V=2776.1 Å3, Rw = 0.064 for 6443 observed reflections. 2: a = 11.876 (1), b = 13.065 (2), c = 20.325(2)Å, α = 74.95(1), β= 85.39(1), γ = 64.09(1)°, Z = 2, V = 2737.3Å3, Rw = 0.055 for ·5303 observed reflections). The results of the structure determination showed that the central units of the two cubane-like cluster compounds are composed of four metal atoms and four non-metal atoms situated at alternate corners. The differences of cubane-like cluster compounds obtained from solid state reactions and from solution reactions are discussed.  相似文献   

12.

Dynamic interfacial tension (DIT) and interface adsorption kinetics at the n‐decane/water interface of 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium chloride (R12TAC) were measured using spinning drop method. The effects of RnTAC concentration and temperature on DIT have been investigated, the reason of the change of DIT with time has been discussed. The effective diffusion coefficient, D a, and the adsorption barrier, ?a, have been obtained with extended Word‐Tordai equation. The results show that the higher the concentration of surfactants is, and the smaller will be the DIT and the lower will be the curve of the DIT, and the R12TAC solutions follow a mixed diffusion‐activation adsorption mechanism in this investigation. With increase of concentration in bulk solution of R12TAC from 8×10?4 mol · dm?3 to 4×10?3 mol · dm?3, D a decreases from 2.02×10?10 m?2 · s?1 to 1.4×10?11 m?2 · s?1 and ? a increases from 2.60 kJ · mol?1 to 9.32 kJ · mol?1, while with increase of temperature from 30°C to 50°C, D a increases from 2.02×10?10 m?2 · s?1 to 5.86×10?10 m?2 · s?1 and εa decreases from 2.60 kJ · mol?1 to 0.73 kJ · mol?1. This indicates that the diffusion tendency becomes weak with increase strength of the interaction between surfactant molecules and that the thermo‐motion of molecules favors interface adsorption.  相似文献   

13.
1-Phenylethyl trifluoroacetate ( 1 ) does not react directly with styrene but it is readily incorporated into polymer chains in the presence of an excess of trifluoroacetic acid. The proportion of the nondeuterated 1-phenylethyl end groups in the polymerization of deuterated styrene coinitiated with the acid was much higher than the proportion of the end groups formed by direct incorporation of the acidic protons ([CH3? CHPh? CD2? CDPh? …] > [HCD2? CDPh? CH2? CDPh? …]). The racemization of the optically active ester-(pseudo-first order rate constant at [HA]0 = 0.79 mol/L at 20°C equals kR = 1.7 × 10?4 S?1) is more rapid than the incorporation of the ester into polymer chains (kE = 1.5 × 10?4 mol?1 Ls?1, [M]0 < 0.4 mol L?1, i.e., kR > kE · [M]). These results and the complete loss of the optical activity in the final polymer indicate that the ester is activated by the acid but it is incorporated into polymer chain via ionic intermediates.  相似文献   

14.
Abstract

The EPR spectra of single crystals of 63Cu(II) doped N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(sal)2en] and 7-methyl-N, N'-bis(salicylidene)ethylenediimine Ni(II), [Ni(7-me sal)2en] have been studied. The usual doublet spin-Hamiltonian parameters for the complexes have been found to be: Cu(II)[(sal)2en]; g z =2.192 ± 0.002; g x =2.046 ± 0.004; g y =2.049 ± 0.004; A z =201.0 × 10?4 cm?1; A x =29.3 × 10?4 cm?1; A y =31.3 × 10?4 cm?1; AN z =12.6 × 10?4 cm?1; A N x =14.5 × 10?4 cm?1; A N y =15.7 × 10?4 cm?1; A H z =6.3 × 10?4 cm?1; A H x =7.3 × 10?4 cm?1; A H y =7.9 × 10?4 cm?1; Cu(II)[(7-me sal)2en]; g z =2.189 ± 0.002; g x =2.037 ± 0.004; g y =2.046 ± 0.004; A z =203.0 × 10?4 cm?1; A x =36.9 × 10?4 cm?1; A y =22.7 × 10?4 cm?1; A N z =12.6 × 10?4 cm?1; A N x =13.3 × 10?4 cm?1; A N y =14.0 × 10?4 cm?1. Values of molecular orbital coefficients calculated for these complexes show that their bonding properties are similar to those of other compounds of this type. There is considerable covalency in the metal-ligand [sgrave]-bonds, and significant in-plane pi-bonding is present.  相似文献   

15.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

16.
Seven new transition metal complexes formulated as [M2(1,4-tpbd)(diimine)2(H2O)2]4+ [M = Zn, Co, Ni, Cd; 1,4-tpbd = N,N,N′,N′-tetrakis(2-pyridylmethyl)benzene-1,4-diamine; diimine is a N,N-donor heterocyclic base like 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 4,5-diazafluoren-9-one (dafo)] have been synthesized and structurally characterized by X-ray crystallography: [Zn2(1,4-tpbd)(phen)2(H2O)2]4+ (1), [Zn2(1,4-tpbd)(bpy)2(H2O)2]4+ (2), [Co2(1,4-tpbd)(phen)2(H2O)2]4+ (3), [Ni2(1,4-tpbd)(phen)2(H2O)2]4+ (4), [Ni2(1,4-tpbd)(bpy)2(H2O)2]4+ (5), [Ni2(1,4-tpbd)(dafo)2(H2O)2]4+ (6) and [Cd2(1,4-tpbd)(phen)2(H2O)2]4+ (7). Single crystal diffraction reveals that the metals in the complexes are all in a distorted octahedral geometry. The interactions of the seven complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The apparent binding constants (Kapp) are calculated to be 5.2?×?105 M?1 for 1, 1.05?×?105 M?1 for 2, 5.76?×?105 M?1 for 3, 4.57?×?105 M?1 for 4, 1.29?×?105 M?1 for 5, 1.7?×?105 M?1 for 6, 2.53?×?105 M?1 for 7, the binding propensity to the calf thymus DNA in the order: 3 (Co-phen) > 1 (Zn-phen) > 4 (Ni-phen) > 7 (Cd-phen) > 6 (Ni-dafo) > 5 (Ni-bpy) > 2 (Zn-bpy). Furthermore, these complexes display efficient oxidative cleavage of supercoiled DNA; the Zn(II)/H2O2 and Cd(II)/H2O2 systems efficiently cleave DNA attributed to the peroxide ion coordinated to the Zn(II) and Cd(II), which enhanced their nucleophilicity, this is rare.  相似文献   

17.
The supramolecular interactions of the ocular drug tropicamide (TR) with cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) were investigated in aqueous solutions by using 1H NMR, ESI-MS and UV–vis spectroscopic techniques. The results indicate a 1:1 binding stoichiometry of TR with CB7 and CB8. The binding constants of TR in its protonated form were higher (e.g. K = 4 × 106 M? 1 with CB8) than in its neutral form (e.g. K = 1.4 × 104 M? 1 with CB8), which led to a complexation-induced increase in its pK a value of ca. 0.5 and 2 units with CB7 and CB8, respectively. In the presence of about 1% (w/v) CB8, the ionisation degree of 0.1% (w/v) TR was increased from 2% to 62% at neutral pH. The increase in the pK a value and thus stabilisation of the protonated TR species at neutral pH is discussed in the context of supramolecular drug delivery of ophthalmologic drugs.  相似文献   

18.
Immobilization of antibody fragments to 3‐phenoxybenzoic acid (3‐PBA), which are created by disulphide bond (S?S) reduction with tris (2‐carboxyethyl) phosphine (TCEP), is reported atop MoS2 and Cu‐doped MoS2 thin films. MoS2 and Cu‐doped MoS2 thin films are electrodeposited using previously reported methods and tested for their ability to immobilize antibody fragments, before and after annealing in Ar at 500 °C for 3 h. This annealing procedure removes excess sulphur in the as‐deposited films, and creates coordinatively unsaturated Mo sites that are highly reactive towards sulphur, as previously reported for MoS2 hydrodesulphurization catalysts. As demonstrated by electrochemical impedance spectroscopy (EIS) measurements, both annealed MoS2 and Cu‐doped MoS2 thin films adsorb antibody fragments through Mo?S bond formation, unlike the as‐deposited films. Impedance detection of 3‐PBA is reported utilizing antibody fragments bound to both materials, with a sensitivity of 2.7×108 Ω cm2 M?1 and a detection limit of 2.5×10?6 M atop MoS2, and a sensitivity of 5.9×108 Ω cm2 M?1 and a detection limit of 3.8×10?6 M atop Cu‐doped MoS2. The rms surface roughness obtained by atomic force microscopy (AFM) measurements atop annealed MoS2 and Cu‐doped MoS2 ranges from 60–140 nm, so the methods described herein are not limited to ultra‐smooth substrates.  相似文献   

19.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

20.
Rate constants for the reactions of OH and NO3 radicals with CH2?CHF (k1 and k4), CH2?CF2 (k2 and k5), and CHF?CF2 (k3 and k6) were determined by means of a relative rate method. The rate constants for OH radical reactions at 253–328 K were k1 = (1.20 ± 0.37) × 10?12 exp[(410 ± 90)/T], k2 = (1.51 ± 0.37) × 10?12 exp[(190 ± 70)/T], and k3 = (2.53 ± 0.60) × 10?12 exp[(340 ± 70)/T] cm3 molecule?1 s?1. The rate constants for NO3 radical reactions at 298 K were k4 = (1.78 ± 0.12) × 10?16 (CH2?CHF), k5 = (1.23 ± 0.02) × 10?16 (CH2?CF2), and k6 = (1.86 ± 0.09) × 10?16 (CHF?CF2) cm3 molecule?1 s?1. The rate constants for O3 reactions with CH2?CHF (k7), CH2?CF2 (k8), and CHF?CF2 (k9) were determined by means of an absolute rate method: k7 = (1.52 ± 0.22) × 10?15 exp[?(2280 ± 40)/T], k8 = (4.91 ± 2.30) × 10?16 exp[?(3360 ± 130)/T], and k9 = (5.70 ± 4.04) × 10?16 exp[?(2580 ± 200)/T] cm3 molecule?1 s?1 at 236–308 K. The errors reported are ±2 standard deviations and represent precision only. The tropospheric lifetimes of CH2?CHF, CH2?CF2, and CHF?CF2 with respect to reaction with OH radicals, NO3 radicals, and O3 were calculated to be 2.3, 4.4, and 1.6 days, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 619–628, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号