首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-D CuICuII mixed oxidation state coordination polymer, [CuIICuI(μ 1,3-SCN)2(μ 1,1,3-SCN)(PhenE)] n (PhenE: 2-ethoxy-1,10-phenanthroline), has been prepared and its crystal structure determined by X-ray crystallography. In the polymer, CuII is a distorted trigonal bipyramidal geometry and CuI has distorted tetrahedral coordination. Thiocyanate bridges in two modes, μ 1,3-SCN and μ 1,1,3-SCN, resulting in a 2-D coordination sheet. The crystal structure analysis shows that there is a splipped ππ stacking in the sheet. The fitting for the variable-temperature magnetic susceptibility data gave the magnetic coupling constant 2J?=??2.72?cm?1 and zJ′?=??2.07?cm?1. The magnetic interaction may be mainly ascribed to intermolecular ππ magnetic coupling.  相似文献   

2.
Abstract. A new dinuclear complex, [Cu21, 3‐NCS)2(Ophen)2(OH2)2], (HOphen = 1, 10‐phenanthrolin‐2‐ol) was synthesized and its crystal structure was determined by X‐ray crystallography. In the complex, the CuII ion assumes a distorted square pyramidal arrangement and the thiocyanate anion functions as bridged ligand and Ophen as capped ligand. The analysis of the crystal structure shows that there exists a π–π stacking interaction between the adjacent complexes. The theoretical calculations reveal that the magnetic coupling pathways from the thiocyanate anions bridge ligand and the π–π stacking magnetic coupling pathway resulted in the weak ferromagnetic interactions with 2J = 18.46 cm–1 and 2J = 10.46 cm–1, respectively. The calculations also display that the spin delocalization and the spin polarization occur in the bridge magnetic coupling system and the π–π stacking magnetic coupling system, and the magnetic coupling mechanism of the π–π stacking can be explained with McConnell I spin‐polarization mechanism. The fitting for the data of the variable‐temperature magnetic susceptibility with dinuclear CuII formula gave the magnetic coupling constant 2J = 2.84 cm–1 and zJ′ = 0.03 cm–1, in which the 2J = 2.84 cm–1 is attributed to the magnetic coupling from the bridge dinuclear CuII unit and the zJ′ = 0.03 cm–1 is ascribed to the π–π stacking magnetic coupling system. The study may benefit to understand the magnetic coupling mechanism of π–π stacking system.  相似文献   

3.
Two copper(I) iodide complexes, [Cu4(Metu)6I4] (I) and [Cu8(Diaz)12I8] (II) (Metu = N-methylthiourea; Diaz = 1,3-diazinane-2-thione), have been prepared and their structures been determined by X-ray crystallography. The crystal structures show that complex I is a tetranuclear, while II is an octanuclear cluster, both having a Cu : S ratio of 2 : 3, characteristic of metallothioneins. In I, each of the four copper atoms is coordinated to three thiourea ligands and one iodide ion in a distorted tetrahedral mode adopting admantane-like structure. In II, four types of core arrangements are observed around copper(I), which include, Cu(μ-S2)I2, Cu(μ-S2)(μ-I)I, Cu(μ-S3)I, and Cu(μ-S3)S each having copper(I) tetrahedrally coordinated. The complexes were also characterized by IR and 1H and 13C NMR spectroscopy.  相似文献   

4.
The temperature‐dependent dynamic properties of [CuII2(ADCOO)4(DMF)2]?(DMF)2 ( 1 ) and [CuII2(ADCOO)4(AcOEt)2] ( 2 ) crystals were examined by X‐ray crystallography, 1H NMR spectroscopy, and measurements of the dielectric constants and magnetic susceptibilities (ADCOO=adamantane carboxylate, DMF=N,N‐dimethylformamide, and AcOEt=ethyl acetate). In both crystals, four ADCOO groups bridged a binuclear CuII? CuII bond, forming a paddle‐wheel [CuII2(ADCOO)4] structure. The oxygen atoms of two DMF molecules in crystal 1 and two AcOEt molecules in crystal 2 were coordinated at axial positions of the [CuII2(ADCOO)4] moiety, forming [CuII2(ADCOO)4(DMF)2] and [CuII2(ADCOO)4(AcOEt)2], respectively. Two additional DMF molecules were included in the unit cell of crystal 1 , whereas AcOEt was not included in the unit cell of crystal 2 . The structural analyses of crystal 1 at 300 K showed three‐fold rotation of the adamantyl groups, whereas rotation of the adamantyl groups of crystal 2 at 300 K was not observed. Thermogravimetric measurements of crystal 1 indicated a gradual elimination of DMF upon increasing the temperature above 300 K. The dynamic behavior of the crystallized DMF yielded significant temperature‐dependent dielectric responses in crystal 1 , which showed a huge dielectric peak at 358 K in the heating process. In contrast, only small frequency‐dependent dielectric responses were observed in crystal 2 because of the freezing of the molecular rotation of the adamantyl groups. The magnetic behavior was dominated by the strong antiferromagnetic coupling between the two S=1/2 spins of the CuII? CuII site, with magnetic exchange energies (J) of ?265 K (crystal 1 ) and ?277 K (crystal 2 ).  相似文献   

5.
Tribochemical reactions of KBr, KI and CaI2 with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O (L = formylhydrazine) give novel CuI and CuII complexes, which have been characterized by elemental analyses, spectral (i.r., u.v.–vis., 1H-n.m.r.) and magnetic measurements. The i.r. spectra indicate that (L) behaves in a monodentate manner, coordinating via the azomethine nitrogen (C-N) group in the CuII complexes, but behaving as a bidentate ligand, via the carbonyl oxygen and NH2 groups in the CuI complexes. KI and CaI2 react with [Cu(L)Cl2(EtOH)3/2(H2O)]-1/2H2O in the solid state, accompanied by a colour change, substitution of the chloride by iodide ions, and reduction of CuII to CuI to give complexes with formulae [Cu(L)I(EtOH)1/2] and [Cu1.7(L)I1.7(EtOH)1/2]. On the other hand, the tribochemical reaction of KBr with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O is accompanied by a colour change; substitution of the chloride by bromide ions, but without reduction of CuII and yields a complex of formula [Cu(L)2Br2(EtOH)(H2O)]1/2EtOH. The spectral and magnetic results suggest a distorted octahedral geometry for the CuII complexes while a tetrahedral geometry around the CuI ion. The non-stoichiometric structure of [Cu1.7(L)I1.7(EtOH)1/2] is discussed.  相似文献   

6.
Three binuclear copper(II) complexes, [Cu2(μ-L)(μ-N3)](ClO4)2′ 1-5 EtOH (1), [Cu2(μ-L)(μ-MeO)(ClO4)]-ClO4 - EtOH ( 2 ) and [Cu2(μ-L)(μ-C3H3N2)](ClO4)2 · 2H2O, ( 3 ) where L is the pentadentale bridging ligand derived from 5-(tert-butyl)-2-hydroxybenzene-1, 3-dicarbaldehyde bis(benzoylhydrazone) ( HL ) were synthesized and characterized. The crystal-structure determination of complex 2 provided the following crystal data: monoclinic, space group P21}/a, a = 11.412(2), b = 24.509(4), c = 14.833(4) Å, β = 104.41(2)°, K = 4018(3) Å3, Z = 4. The structure shows that the CuII ions are bridged by the endogenous phenolato O-atom and by an exogenous bridge CH3O?. The analysis of variable-temperature magnetic susceptibility data (4-300 K.) indicates that there is an antiferromagnetic interaction between the CuII ions in these complexes with an exchange parameter (2J) of ?119.1 cm?1 for complex 1 and ?361.8 cm?1 for complex 3 . The effect of some exogenous bridging ligands on magnetic coupling for this type of complex is suggested.  相似文献   

7.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

8.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

9.
The reaction of [Cu(L)](ClO4)2 · H2O (L=1,3,10,12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) with NaN3 and Na2tp yields mononuclear and dinuclear copper(II) complexes, [Cu(L)(N3)](ClO4) (1) and [Cu(L)(μ-tp)](ClO4) · 2H2O (2). These complexes have been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and magnetic susceptibility. The crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one nitrogen atom from the azide group coordinating the axial position. The copper(II) ions in (2) are bridged by the terephthalate anion to form a dinuclear complex, in which each copper(II) ion reveals a distorted square-pyramid with four nitrogen atoms of the macrocycle and the oxygen atom of bridging tp ligand. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The magnetic susceptibility measurement for (2) exhibits a weak antiferromagnetic interaction between copper(II) centers with a 2J value of −2.21 cm−1 (H = −2JΣS1 · S2). The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

10.
Based on an asymmetric 1,2,4‐benzenetricarboxylic acid (H3btc) and 2,2′‐bipyridine (bpy), a new CuII complex, Cu2(H2btc)4(bpy)2 · 8H2O ( 1 ), was synthesized and structurally characterized by single‐crystal X‐ray diffraction, hirshfeld surface (HS) analysis, IR spectroscopy, powder X‐ray analysis, thermal gravimetry analysis (TGA), magnetic susceptibility, EPR measurement, and UV/Vis spectrometry. Complex 1 shows a dinuclear copper structure. The CuII of each dinuclear moiety are in a slightly distorted square‐pyramidal environments. Magnetic susceptibility of 1 shows a ferromagnetic coupling between both metal atoms. The interaction of 1 with bovine serum albumin (BSA) is investigated using UV/Vis, fluorescence spectroscopic methods. The CuII complex shows strong binding propensity in albumin binding study.  相似文献   

11.
cis and trans-copper(II) porphyrin dimers have been synthesized, in which two CuII porphyrin macrocycles are bridged through a rigid ethene linker for possible through-space and through-bond spin-couplings between the paramagnetic CuII centers. It has been found that the two macrocycles come closer after 1 e oxidation, however, they move far apart upon further 1 e oxidation leading to transformation of the cis to the trans isomer. Detailed investigations are performed here on the interactions between the two porphyrin macrocycles, between two unpaired spins of closely spaced CuII centers, and also between the unpaired spins of metal and porphyrin π–cation radicals. Spectroscopic investigations along with the X-ray structure of the 2 e-oxidized complex displayed strong electronic communications through the bridge between two porphyrin π–cation radicals. The counterion I9 is stabilized in an unusual trigonal-pyramidal structure in the 2 e-oxidized complex in which the central iodide ion is bound with four iodine (I2) molecules. Variable-temperature magnetic study revealed strong antiferromagnetic coupling between the two porphyrin π–cation radical spins (Jr–r) in the 2 e-oxidized complex. DFT calculations suggest stabilization of the triplet state, which is also in good agreement with the experiment. Ab initio molecular dynamics allowed the variation of the structural details to be followed upon stepwise oxidations and also the final isomerization process including its associated energy barrier.  相似文献   

12.
Polymorphism and an unexpected reconstructive phase transition in [Cu(trop)(μ‐OMe)]2 (trop = tropolonate) were studied by single crystal and powder X‐ray diffraction; the phase transition is associated with a huge hysteresis of ca. 200 °C. In the readily reproducible crystal form, the methoxide‐bridged dinuclear subunits aggregate to infinite chains by longer bonds in the Jahn‐Teller distorted coordination sphere. Analogous alkoxide‐bridged derivatives with the substituted ligand hinokitiol (hino), [Cu(hino)(μ‐OR)]2 (R = Me, Et, iPr) form pairs of dinuclear complexes and aggregate to discrete tetranuclear molecules. The inter‐cation distance patterns are reflected in the magnetic properties of these two structure types: Strong antiferromagnetic coupling within the dinuclear subunits is observed in either case, but susceptibility measurements confirm differences in exchange coupling between neighboring central CuII atoms.  相似文献   

13.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

14.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   

15.
From a predesigned grid, [CuII5CuI4L6] ? (I)2 ? 13 H2O ( 1 ), in which LH2 was a pyrazinyl‐triazolyl‐2,6‐substituted pyridine, we successfully synthesized an extended 3D complex, 1[{CuII5CuI8L6}{μ‐[CuI3(CN)6]}2 ? 2 CH3‐ CN] ( 2 ), that displayed unprecedented coexistence of all the five known coordination geometries of copper. Grid 1 displayed monovalent central metal exchange (CME) of CuI for AgI for the first time, as well as the formation of tri‐iodide in the crystalline state. These systems were investigated for their magnetic properties. Remarkably, grid 1 showed much higher catalytic activity than the Ag‐exchanged product for synthesis of a substituted triazole, 1‐benzyl‐4‐phenyl‐1H‐1,2,3‐triazole.  相似文献   

16.
《Polyhedron》2007,26(9-11):2054-2058
An intermediate in photoinduced magnetization process for the photomagnetic high-spin molecule [MoIV(CN)2(CN-CuL)6]8+ is studied with quantum chemistry calculations of the density functional theory and the ab initio multireference configuration interaction methods. It is found that the intramolecular electronic transfer from MoIV to CuII leads one trigonal-bipyamid coordinated CuII to be changed to the tetrahedral coordinated CuI with the light irradiation. The calculated magnetic properties show that the paramagnetic system [MoIV(CN)2(CN-CuIIL)6]8+ with six isolated spin 1/2 Cu ions is changed to ferromagnetic coupling high-spin system [MoV(CN)2(CN-CuIIL)5(CN-CuIL)]8+. These calculations will help to understand photoinduced magnetization phenomenon and provide a clue for the synthesization of new reversible photoinduced magnetic compounds.  相似文献   

17.
Two dinuclear CuII complexes of formula [Cu2(dpyam)4(μ-C2O4)](PF6)2(H2O)2 (1) and [Cu2(dpyam)2(μ-C2O4)(NO3)2(DMF)2] (2) (dpyam=di-2-pyridylamine) have been synthesized and their spectroscopic and magnetic properties characterized. Complex (1) crystallizes in the non-centrosymmetric monoclinic space group Pc, while (2) crystallizes in the non-centrosymmetric triclinic space group P1. Compound (1) involves the compressed octahedral CuII environment, whereas (2) exhibits an elongated octahedral CuII geometry. Both complexes contain six-coordinate metal centers bridged by planar bis-didentate oxalate group. The geometry, spectroscopic properties and the effective magnetic moment of (1) are very close to those of the recently published [Cu2(dpyam)4 (μ-C2O4)](ClO4)2(H2O)3 and [Cu2(dpyam)4(μ-C2O4)](BF4)2(H2O)3. Thus (1) is expected to exhibit a very weak ferromagnetic interaction between the CuII centers which is confirmed by EPR spectrum. Those of (2) are comparable to those of the recently published [Cu2(dpyam)2(μ-C2O4)(NO3)2(DMSO)2]. Therefore a strong antiferomagnetic interaction is expected. The effective magnetic moment at room temperature of (1) was measured to be 2.55 BM/dimer, which agrees with the spin only value of CuII, 2.45BM calculated for two uncoupled spin=1/2 centers. In (2) the room temperature effective magnetic moment of 2.16 BM/dimer indicates the partial spin paring by antiferromagnetic coupling. This is confirmed by the e.p.r. spectrum and is explained as a result of the magnetic interaction between the coplanar ${\rm d}_{x^2-y^2}$ orbitals on the two copper atoms.  相似文献   

18.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

19.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

20.
A new assembly [Cu2(sac)2(μ‐dmea)2(μ‐H2O)]n (sac = saccharinate and Hdmea = 2‐dimethylaminoethanol) has been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X‐ray diffraction. The complex crystallizes in the monoclinic space group C2/c and consists of dinuclear modules of [Cu2(sac)2(dmea)2]. The sac ligand is N‐coordinated, while the dmea ligand is in the deprotanated form by losing the ethanol hydrogen atom and acts as a bidentate donor through the alkoxo group and N atom. The alkoxo group also serves as a bridge between two copper(II) ions, leading to an intra‐dimer Cu···Cu separation of 3.0229(7) Å. The dimeric units are bridged by aqua ligands to generate a one‐dimensional water‐bridged helical chain, in which the copper(II) ions exhibit a distorted square‐pyramidal CuN2O3 coordination. The Cu–Cu distance in the chain separated by the bridging aqua ligands is 5.297Å. The polymeric chains are further linked by π(sac)···π(sac) and C–H···π(sac) interactions into a two‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号