首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve new Au(III), Pt(II) and Pd(II) complexes with glycyl-containing homopeptides glycyl-glycine (G2), glycyl-glycyl-glycine (G3), glycyl-glycyl-gycyl-glycine (G4), glycyl-glycyl-glycyl-glycyl-glycine (G5) and glycyl-glycyl-glycyl-glycyl-glycyl-glycine (G6) have been synthesized, isolated and characterized spectroscopically and structurally by means of solid-state linear-dichroic infrared (IR-LD) spectroscopy of oriented colloids in nematic liquid crystal host, 1H- and 13C-NMR, TGA and DSC, UV–Vis spectroscopy, EPR, ESI- and FAB mass spectrometry and HPLC tandem mass spectrometry (HPLC-MS/MS). Quantum chemical calculations are carried out with a view to obtain the structures and spectroscopic properties of the ligand and newly synthesized metal complexes.  相似文献   

2.
The coordination ability of 4-amino-4H-1,2,4-triazole with Pt(II), both in solution and solid states, is elucidated by conventional and linear-polarized IR spectroscopy of oriented colloid suspensions in nematic host, 1H- and 13C-NMR, UV-Vis spectroscopy, mass spectrometry (ESI and FAB), TGV, and DSC methods. The interpretation of the spectroscopic characteristics of corresponding metal complexes is obtained by comparison with free 4-amino-4H-1,2,4-triazole. In addition, quantum chemical calculations of the last compound are performed to obtain data for electronic structures and optical properties of the ligand, thus supporting the experimental elucidation. The evaluation of the cell viability on a panel of human tumor cell lines is made. The new Pt(II) complexes exerted cytotoxic effects in a concentration-dependent manner.  相似文献   

3.
Abstract

The reaction of antitumor active dirhodium(II) tetraacetate, [Rh2(AcO)4], with S-methyl-L-cysteine (HSMC) was studied at the pH of mixing (=4.8) in aqueous media at various temperatures under aerobic conditions. The results from UV–vis spectroscopy and electrospray ionization mass spectrometry (ESI–MS) showed that HSMC initially coordinates via its sulfur atom to the axial positions of the paddlewheel framework of the dirhodium(II) complex, and was confirmed by the crystal structure of [Rh2(AcO)4(HSMC)2]. After some time (48?h at 25?°C), or at elevated temperature (40?°C), Rh-SMC chelate formation causes breakdown of the paddlewheel structure, generating the mononuclear Rh(III) complexes [Rh(SMC)2]+, [Rh(AcO)(SMC)2] and [Rh(SMC)3], as indicated by ESI–MS. These aerobic reaction products of [Rh2(AcO)4] with HSMC have been compared with those of the two proteinogenic sulfur-containing amino acids methionine and cysteine. Comparison shows that the (S,N)-chelate ring size influences the stability of the [Rh2(AcO)4] paddlewheel cage structure and its RhII–RhII bond, when an amino acid with a thioether group coordinates to dirhodium(II) tetraacetate.  相似文献   

4.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

5.
Dipeptides glycyl- L -serine and L -seryl– L -tyrosine are tridentate ligands in coordination with Cu(II) through their NH2?, N–(from deprotonated amide group) and O–atom (by COO- group), forming [CuII(LH?1)H2O]. The forth position of square-planar geometry of Cu2+ is occupied by H2O as terminal ligand. Solid-state linear dichroic IR-spectroscopy, UV-Vis, mass spectrometry with ESI and FAB, tandem mass spectrometry (HPLC-MS/MS), TGV and DSC methods, EPR and magnetochemistry data prove the formation of five-membered chelate rings with participation of Cu2+ both in solution and in solid state.  相似文献   

6.
《中国化学会会志》2017,64(7):833-842
In the present work, the cobalt(II ) synergist complex with isobutyric acid (HLI ) and 5‐hydroxy‐4‐octanone oxime (HBI ), which were the corresponding short‐chain analogs of active synergistic mixture of Versatic10 (HL ) and Lix63 (5,8‐diethyl‐7‐hydroxy‐6‐dodecanoneoxime, HB ), was prepared and studied by X‐ray single‐crystal diffraction. The crystal structure of the cobalt(II ) synergistic complex showed that the composition of the complex was Co(HBI )2(LI )2 with a cis‐form octahedron geometry structure. Both intra and intermolecular hydrogen bonding between the uncoordinated carbonyl oxygen atom of the deprotonated monodentate anionic ligand LI and the hydrogen atom of the α‐hydroxy or the oxime hydroxyl group of HBI were observed in the crystal lattice. In order to bridge the gap between the solid‐state structure of the cobalt(II ) synergist complex and the solution structure of the extracted cobalt(II ) complex with the actual synergistic mixture containing Versatic10 and Lix63 in the nonpolar organic phase, both the cobalt(II ) synergistic complex and the extracted cobalt(II ) complex were further investigated by Fourier transform infrared spectroscopy (FT‐IR ) and electrospray ionization mass spectrometry (ESI‐MS ). The results indicated that the extracted cobalt(II ) complex in the nonpolar organic phase might possess a similar coordination structure as that of the cobalt(II ) synergist complex.  相似文献   

7.
A new chelating matrix has been prepared by immobilising sulfanilamide (SA) on silica gel (SG) surface modified with 3-chloropropyltrimethoxysilane as a sorbent for the solid-phase extraction (SPE) Cu(II), Zn(II) and Ni(II). The determination of metal ions in aqueous solutions was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective sorption of trace levels of Cu(II), Zn(II) and Ni(II) were optimised with respect to different experimental parameters using the batch and column procedures. The presence of common coexisting ions does not affect the sorption capacities. The maximum sorption capacity of the sorbent at optimum conditions was found to be 34.91, 19.07 and 23.62 mg g?1 for Cu(II), Zn(II) and Ni(II), respectively. The detection limit of the method defined by IUPAC was found to be 1.60, 0.50 and 0.61 µg L?1 for Cu(II), Zn(II) and Ni(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 4.0% (n = 8). The method was applied to the recovery of Cu(II), Zn(II) and Ni(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water samples with satisfactory results.  相似文献   

8.
The mononuclear complex Pd(1‐TosC‐N3)2Cl2 (2) containing 1‐(p‐toluenesulfonyl)cytosine (1) as a ligand, as well as dinuclear complexes Pd2(1‐TosC?N3,N4)4 (3) and Pd2(1‐TosC?N3,N4)2DMSO2Cl2 (4) containing the ligand anion (1‐TosC?), was mass analyzed by electrospray ionization ion trap MS/MS and high resolution MS. Complexes 3 and 4 were obtained by recrystallization of 2 from DMF and DMSO, respectively. The behavior of complex 2 in different solutions was monitored by electrospray ionization mass spectrometry (ESI‐MS). Under the applied ESI‐MS conditions, complex 2 in methanol reorganized itself dominantly as new complex 3 and the solvent did not coordinate the formed species. In H2O/DMSO, CH3CN/DMSO and CH3OH/DMSO solutions, complex 2 formed several new species with solvent molecules involved in their structure, e.g. complex 4 was formed as the major product. The newly formed species were also examined by LC‐MS‐DAD, confirming the solvent induced reorganization and the solution instability of complex 2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The thermal behavior of montmorillonite and organically modified montmorillonite, both treated with heavy metal cations [Cu(II), Cd(II) and Hg(II)], was characterized via thermal analyses (TG, DTG and DTA) combined with evolved species gas mass spectrometry (MS-EGA), and X-ray diffraction at in situ controlled temperature (HTXRD). The reactions involving Cu(II)- and Cd(II)-montmorillonite samples are mostly related to H2O and OH loss, unlike Hg(II)-montmorillonite, where effects associated to Hg(II) loss are also present. Finally reactions related to dehydration, dehydroxylation and to organic matter decomposition can be observed in montmorillonite samples treated with cysteine.  相似文献   

10.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

11.
Mercury(I) chloride disproportionates to mercury metal and bis(organothiolato)mercury(II) in the presence of some thiols in good yields. The products were analyzed by means of 1H?NMR and gas chromatographic–mass spectrometry (GC/MS), which indicated that the complexes are monomers in the gas phase and decomposed at elevated temperature to mercury(0) and corresponding disulfides.  相似文献   

12.
Two novel [2+2] metallo‐assemblies based on a guanosine‐substituted terpyridine ligand ( 1 ) coordinated to palladium(II) ( 2 a ) and platinum(II) ( 2 b ) are reported. These supramolecular assemblies have been fully characterized by NMR spectroscopy, ESI mass spectrometry and elemental analyses. The palladium(II) complex ( 2 a ) has also been characterized by single crystal X‐ray diffraction studies confirming that the system is a [2+2] metallo‐rectangle in the solid state. The stabilities of these [2+2] assemblies in solution have been confirmed by DOSY studies as well as by variable temperature 1H NMR spectroscopy. The ability of these dinuclear complexes to interact with quadruplex and duplex DNA was investigated by fluorescent intercalator displacement (FID) assays, fluorescence resonance energy transfer (FRET) melting studies, and electrospray mass spectrometry (ESI‐MS). These studies have shown that both these assemblies interact selectively with quadruplex DNA (human telomeric DNA and the G‐rich promoter region of c‐myc oncogene) over duplex DNA, and are able to induce dimerization of parallel G‐quadruplex structures.  相似文献   

13.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

14.
The novel PNP‐lariat ether L with cyclotriphosphazene ring incorporated in the macrocyclic structure was synthesized and checked by the electrospray mass spectrometry (ESI‐MS) method for the ability to bind different types of ions Ag+, Ca2+, Cd2+, Cu2+, and Pb2+. Furthermore, the stability constants of the abovementioned ion complexes with the investigated ligand have been determined by direct and competitive potentiometric methods. To evaluate the stability of various complex types and to confirm the way of metal cation binding, the tandem mass spectra of the investigated ligand and its complexes were taken. As a result, we obtained quite a good relationship between the number and main types of complex species observed in ESI‐MS experiments and the forms of complexes for which the stabilization constants were determined by potentiometric methods. Moreover, we also concluded that in case of big discrepancies of stability constants, ESI‐MS experiments could provide information about the most stable form of the complexes, but they fail when the differences between the strength of the coordination binding are slightly different.  相似文献   

15.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

16.
The intramolecular cyclization of o‐alkynylphenylphosphonamide and N‐(o‐alkynylphenyl)acetamide was monitored by electrospray ionization mass spectrometry (ESI‐MS) and its tandem version (ESI‐MS/MS). The proposed intermediates were successfully intercepted and characterized. In addition, the intermediates composed of the substrate coordinated to the palladium(II) center in the reaction of o‐alkynylphenylphosphonamide were unexpected before, and this interesting phenomenon of the substrate coordination seems associated with the unique structure of substrates.  相似文献   

17.
Physico-chemical properties of 4-chloro-2-nitrobenzoates of Co(II), Ni(II), and Cu(II) were studied. The complexes were obtained as mono- and trihydrates with a metal ion to ligand ratio of 1:2. All analysed 4-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II), and blue for Cu(II) complexes. Their thermal decomposition was studied only in the range of 293–523 K, because it was found that on heating in air above 523 K 4-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10–4–10–2 mol dm–3. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 4-chloro-2-nitrobenzoates experimentally determined at 76–303 K change from 3.89 to 4.82 μB for Co(II) complex, from 2.25 to 2.98 μB for Ni(II) 4-chloro-2-nitrobenzoate, and from 0.27 to 1.44 μB for Cu(II) complex. 4-chloro-2-nitrobenzoates of Co(II), and Ni(II) follow the Curie–Weiss law. Complex of Cu(II) forms dimer.  相似文献   

18.
Compounds [HQ]2[Hg(L)2] and [HQ][PhHg(L)] [where HQ = diisopropylammonium cation; L = pspa, fspa, tspa, where p = 3-(phenyl), f = 3-(2-furyl), t = 3-(2-thienyl), and spa = 2-sulfanylpropenoato] have been prepared by the reaction of mercury(II) acetate or phenylmercury(II) acetate with the corresponding acid in the presence of diisopropylamine in ethanol. The compounds have been characterized by elemental analysis, FAB mass spectrometry and IR and NMR (1H, 13C) spectroscopy. The crystal structures of the [HQ]2[Hg(L)2] compounds show the presence of diisopropylammonium cations and [Hg(L)2]2− anions. In each anion the Hg atom is in an HgO2S2 environment and this can be described as nido-tbp. The crystal structures of the [HQ][PhHg(L)] compounds show the presence of diisopropylammonium cations and [PhHg(L)] anions in which the Hg atom adopts an HgCOS distorted T-environment. The NMR data suggest that the coordination mode of the ligand L2− determined by X-ray diffractometry in the solid remains in solution.  相似文献   

19.
A new robust high‐performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI‐MS)‐based screening method for angiotensin‐converting enzyme (ACE)‐inhibiting substances in crude samples is described. The ACE assay is carried out in a typical offline setup by incubation of the samples with ACE and angiotensin I (AI), followed by stopping the reaction with acetonitrile containing val5‐AI serving as internal standard (I.S.). AI and the product angiotensin II (AII) are extracted from the incubation mixture by turbulent‐flow chromatography (TFC) applied in backflush mode as online solid‐phase extraction and are directly quantified by ESI(+)‐MS. The presence of ACE inhibitors (ACEi) is detected by an increase in AI signal intensity and a corresponding decrease of AII signal, as compared to the blank assay. The overall time of analysis of the TFC/ESI‐MS method was 5 min, thus making the described setup suitable for a rapid screening method. The assay was validated using a known ACE inhibitor and the IC50 values found were in good accordance with a common HPLC/UV method and literature data. The method was successfully applied for the screening of size‐exclusion chromatography fractions of the venom of the pitviper Bothrops moojeni. Three of 18 analyzed fractions inhibited ACE, due to peptides present as components of this snake venom. These compounds were extracted from the two most‐active fractions by means of TFC and isolated by means of HPLC. Three peptides with ACE inhibitory activity were characterized and their structures were elucidated with ESI‐MS/MS‐based de novo sequencing to be ZKWPPGKVPP, ZKWPRPGPEIPP and ZNWPRPGPEIPP, respectively (Z = pyroglutamic acid). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号