首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

2.
The reaction of a mixture of cis and trans-[PtCl2(SMe2)2] with 4,7-phen (4,7-phen = 4,7-phenanthroline) in a molar ratio of 1 : 1 or 2 : 1 resulted in the formation of mono and binuclear complexes trans-[PtCl2(SMe2)(4,7-phen)] (1) and trans-[Pt2Cl4(SMe2)2(μ-4,7-phen)] (2), respectively. The products have been fully characterized by elemental analysis, 1H, 13C{1H}, HHCOSY, HSQC, HMBC, and DEPT-135 NMR spectroscopy. The crystal structure of 1 reveals that platinum has a slightly distorted square planar geometry. Both chlorides are trans with a deviation from linearity 177.66(3)°, while the N–Pt–S angle is 175.53(6)°. Similarly, the reaction of a mixture of cis and trans-[PtBr2(SMe2)2] with 4,7-phen in a 1 : 1 or 2 : 1 mole ratio afforded the mono or binuclear complexes trans-[PtBr2(SMe2)(4,7-phen)] (3) and trans-[Pt2Br4(SMe2)2(μ-4,7-phen)] (4), respectively. The crystal structure of trans-[Pt2Br4(SMe2)2(μ-4,7-phen)].C6H6 reveals that 4,7-phen bridges between two platinum centers in a slightly distorted square planar arrangement of the platinum. In this structure, both bromides are trans, while the PtBr2(SMe2) moieties are syn to each other. NMR data of mono and binuclear complexes of platinum 14 show that the binuclear complexes exist in solution as a minor product, while the mononuclear complexes are major products.  相似文献   

3.
The reaction of potassium tetrachloroplatinate(II) with dimethylsulfide and a mixture of HBr/KBr affords trans-[PtBr2(SMe2)2]; [PtBr2(Me2bpy)] (Me2bpy = 4,4'-dimethyl-2,2'-bipyridine) was prepared from the reaction of trans-[PtBr2(SMe2)2] with Me2bpy. The crystal structure of the yellow form of [PtBr2(bu2bpy)] (bu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) was determined by X-ray crystallography. The X-ray single-crystal structure determination of complex [PtBr2(bu2bpy)] reveals that the platinum adopts a square planar geometry with a twofold axis through the platinum atoms. Thermal properties of the related series of diimine platinum(II) complexes [PtX2(bu2bpy)] (X?=?Cl, Br, I) reveal that the thermal stabilities increase [PtI2(bu2bpy)]?<?[PtCl2(bu2bpy)]?<?[PtBr2(bu2bpy)]. [PtBr2(bpy)] (bpy = 2,2'-bipyridine), [PtBr2(Me2bpy)] and [PtX2(bu2bpy)] (X?=?Cl, Br, I) were studied by MTT assay against two human breast cancer cell lines of MCF-7 and MDA-MB-468 with [PtCl2(bu2bpy)] having a higher cytotoxic effect towards both cancer cell lines, which shows the significant role of the halide and diimine ligand. Semi-spherical Pt(0) nanoparticles (NPCs) were prepared by the simple calcination of [PtX2(bu2bpy)] (X?=?Cl, Br, I) at 800?°C in air.  相似文献   

4.
Reaction of platinum(IV) chloride with SnCl2?·?2H2O in the presence of [NHR3]3Cl (R?=?Me, Et) in 3M hydrochloric acid affords the anionic five-coordinate platinum(II) complexes [NHR3]3[Pt(SnCl3)5], R?=?Me (1), Et (2), respectively. Moreover, platinum(IV) chloride reacts with SnCl2?·?2H2O in the presence of bis(triphenylphosphoranylidene)ammonium chloride in acetone/dichloromethane to form [N(PPh3)2]3[Pt(SnCl3)5] (3). In contrast, reaction of an acetone solution of platinum(IV) chloride with SnCl2?·?2H2O in the presence of bis(triphenylphosphoranylidene) ammonium chloride resulted in the formation of cis-[N(PPh3)2]2[PtCl2(SnCl3)2] (4). The same products are obtained by using a platinum(II) salt as starting material. Similarly, cis and trans- dichlorobis(diethyl sulfide)platinum(II) reacts with SnCl2?·?2H2O in 5M hydrochloric acid to give [PtCl(SEt2)3]3[Pt(SnCl3)5] (5) by facile insertion of SnCl2 into the Pt–Cl bond. However, treatment of an acetone solution of cis- and trans-[PtCl2(SEt2)2] with SnCl2?·?2H2O in the presence of a small amount of HCl resulted in the formation of 5, which dissociates in solution to give [PtCl2(SEt2)2]. The complexes have been fully characterized by elemental analysis and multinuclear NMR (1H,?13C,?195Pt,?119Sn) spectroscopy. A structure determination of crystals grown from a solution of 2 by X-ray diffraction methods shows that platinum adopts a regular trigonal bipyramidal geometry.  相似文献   

5.
The first 119Sn NMR evidence for the presence of direct platinum–tin bond in solution has been obtained for PtCl(SnCl3)(bdpp) complex (bdpp = (2S,4S)-2,4-bis(diphenylphosphino)pentane). Various PtCl2(L2) complexes (L2 = heterobidentate P–P, P–O, P–N, P–S chelating ligands) have been reacted with tin(II)chloride resulting in the formation of the corresponding PtCl(SnCl3)(L2) derivatives. Tin(II)chloride has been inserted into the Pt–Cl bond transto the harder donor atom of the L2 ligand.  相似文献   

6.
The work reports the unexpected reaction of diphenyldibromo antimonates (III) with PtCl2 and cis‐[PtCl2(PPh3)2]. The reaction gives triphenylstibine containing PtII complexes viz. cis‐[PtBr2(SbPh3)2] ( 1 ), trans‐[[PtBr(Ph)(SbPh3)2] ( 2 ), [NMe4][PtBr3(SbPh3)] ( 3 ), and cis‐[PtBr2(PPh3)(SbPh3)] ( 4 ). All the complexes were characterised by elemental analyses, IR, Raman, 195Pt NMR, FAB mass spectroscopy and X‐ray crystallography. A plausible mechanism via the phenyl migration is proposed for the formation of these complexes. The average Pt–Br distance in 1 is 2.456(2) Å, in 2 2.496 Å(trans to Ph) while in 3 it is 2.476 Å (trans to Sb) implying a comparable trans influence of Ph3Sb and Ph3P.  相似文献   

7.
Summary Treatment ofcis-dichlorobis(dimethyl sulphoxide)platinum(II) [1] with an excess oftert-butylamine in MeOH yieldstert-butylamine-trans-dichloro(dimethyl sulphoxide)-platinum(II) [(tr-5)], rather than thecis-diaminechloro-(dimethyl sulphoxide)platinum(II) cation expected by analogy with similar reactions reported in the literature. The correspondingcis isomer [(cis-5)] is prepared from the same reactants (and similarly from K2PtCl4 andtert-butylamine) in DMSO medium, in which the initially formedtrans compound partially isomerizes to the thermodynamically favouredcis complex. The molecular structure of (cis-5) is determined by X-ray analysis. The coordination around the Pt atom is square-planar, and the DMSO ligand is S-coordinated. The lengths of the Pt-Cl bondscis andtrans to the DMSO ligand are 2.296(11) and 2.321(10) Å, respectively, and are well within expected ranges. Interatomic distances within the amine and DMSO ligands are normal.  相似文献   

8.
Abstract  The electrospray mass spectrometric (ESI–MS) behavior of the complexes trans-dichloro(ethylenediamine-N,N′-di-3-propionato)platinum(IV), trans-dibromo(ethylenediamine-N,N′-di-3-propionato)platinum(IV), dichloro(ethylenediamine-N,N′-di-3-propionic acid)platinum(II), tetrachloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), chlorotribromo(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), and dichloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(II), with the formulae trans-[PtCl2(eddp)] (1), trans-[PtBr2(eddp)] (2), [PtCl2(H2eddp)] (3), [PtCl4(Bu2eddp)] (4), [PtBr3Cl(Bu2eddp)] (5), and [PtCl2(Bu2eddp)]·H2O (6), is reported. The deprotonated molecular ions or halide adducts are usually observed. ESI–MS data demonstrate the usefulness of the method for efficient characterization of metal complexes in solution. Graphical Abstract     相似文献   

9.
The polar phosphanyl‐carboxamide, 1′‐(diphenylphosphanyl)‐1‐[N‐(2‐hydroxyethyl)carbamoyl]ferrocene ( 1 ), reacts readily with hydrogen peroxide and elemental sulfur to give the corresponding phosphane‐oxide and phosphane‐sulfide, respectively, and with platinum(II) and palladium(II) precursors to afford various bis(phosphane) complexes [MCl2( 1 ‐κP)2] (M = trans‐Pd, trans‐Pt and cis‐Pt). The anticancer activity of the compounds was evaluated in vitro with the complexes showing moderate cytotoxicities towards human ovarian cancer cells. Moreover, the biological activity was found to be strongly influenced by the stereochemistry, with trans‐[PtCl2( 1 ‐κP)2] being an order of magnitude more active than the corresponding cis isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The crystal structures of cis‐dichlorido(ethylamine‐κN)(piperidine‐κN)platinum(II), [PtCl2(C2H7N)(C5H11N)], (I), cis‐dichlorido(3‐methoxyaniline‐κN)(piperidine‐κN)platinum(II), [PtCl2(C5H11N)(C7H9NO)], (II), and cis‐dichlorido(piperidine‐κN)(quinoline‐κN)platinum(II), [PtCl2(C5H11N)(C9H7N)], (III), have been determined at 100 K in order to verify the influence of the nonpiperidine ligand on the geometry and crystal packing. The crystal packing is characterized by N—H...Cl hydrogen bonding, resulting in the formation of chains of molecules connected in a head‐to‐tail fashion. Hydrogen‐bonding interactions play a major role in the packing of (I), where the chains further aggregate into planes, but less so in the case of (II) and (III), where π–π stacking interactions are of greater importance.  相似文献   

11.
The complexes K[PtCl3(Meug)] (1; Meug = methyleugenol), K[PtCl3(Meteug)] (2; Meteug = methyl eugenoxyacetate), and K[PtCl3(Eteug)] (3; Eteug = ethyl eugenoxyacetate) reacted with AgNO3, SnCl2, KOH, or ethanol–water solutions to lose one aryl proton and form dinuclear metallacyclic complexes Pt2Cl2(Meug-1H)2 (4), Pt2Cl2(Meteug-1H)2 (5), and Pt2Cl2(Eteug-1H)2 (6), respectively. Complexes 4–6 reacted with aliphatic, aromatic, and heterocyclic amines to give various mononuclear metallacyclic platinum complexes 7–15. 1H NMR spectra showed that in 4–15 Meug, Meteug, and Eteug are bound with Pt(II) both at the benzene carbon and at the ethylenic double bond of the side chain. NOESY spectra and single-crystal X-ray diffraction indicated that in 7–15 the amines are in cis-position with respect to the ethylenic double bond.  相似文献   

12.
Both cis‐ and trans‐di­chloro­bis­(di­phenyl ­sulfide)­platinum(II), [PtCl2(C12H10S)2], crystallize as mononuclear pseudo‐square‐planar complexes. In the cis compound, the Pt—Cl distances are 2.295 (2) and 2.319 (2) Å, and the Pt—S distances are 2.280 (2) and 2.283 (2) Å. In the trans compound, Pt is located on a centre of inversion and the Pt—Cl and Pt—S distances are 2.2786 (15) and 2.3002 (12) Å, respectively.  相似文献   

13.
Reactions of 3,6-bis(2′-pyridyl)pyridazine derivatives (n-dppn) ¶For the n-dppn ligands, n stands for the size of the cyclic aliphatic ring on positions 4 and 5 of the pyridazine ring, n?=?5, 6, 8, and 12. with MX2(PhCN)2 (M?=?Pd, Pt; X?=?Cl,?Br) have been investigated. The new complexes cis-[PdCl2(n-dppn)] (n?=?5,?6,?8,?12), cis-[PtCl2(n-dppn)]?·?H2O (n?=?5,?6), cis-[PtCl2(8-dppn)] and cis-[PtBr2(5-dppn)] have been characterized by elemental analyses, conductivity measurements, infrared, electronic and 1H-NMR spectra.  相似文献   

14.
The reaction of tetraphenylphosphonium chloride with an equimolar amount of potassium tetrachloroplatinate or hexachloroplatinic acid in dimethyl sulfoxide gave the complexes [Ph4P]+[PtCl3(DMSO)]? (I) and [Ph4P]+[PtCl5(DMSO)]? (II), respectively. The phosphorus atoms in the cations have tetrahedral environment, the CPC angles and P-C distances 105.63(13)°–112.13(14)°, 1.795(3)–1.797(3) Å I) and 105.7(3)°–112.9(3)°, 1.783(7)–1.791(6) Å II). The platinum coordination polyhedra in the anions [PtCl3(DMSO)]? and [PtCl5(DMSO)]? are distorted square (Pt-S, 2.1937(8); Pt-Cl, 2.2894(10)–2.3024(10) Å; trans-angles: SPtCl, 177.38(4)°; ClPtCl, 175.40(4)°) and octahedron (Pt-S 2.291(2) Å; Pt-Cl, 2.312(2)–2.334(2) Å, trans-angles: SPtCl, 178.28(9)°; ClPtCl, 178.80(9)° and 178.88(8)°).  相似文献   

15.
Summary The platinum(II) halidecis-[Pt(DMTC)(DMSO)X2] andcis-[Pt(DETC)(DMSO)X2](X=Cl or Br; DMSO=dimethyl sulfoxide; DMTC=EtOSCN-Me2; DETC=EtOSCNEt2) adducts and the platinum(II) and palladium(II) halide adducts,trans-[M(DETC)2X2] (M=Pt or Pd; X=Cl or Br), have been prepared. The complexes were characterized by i.r., and1H and13Cn.m.r. spectroscopy. Both DMTC and DETC coordinate through the sulphur atoms. The 1:2 DETC complexes present the usualtrans configuration, whereas the presence of DMSO favourscis geometry in the mixed species.  相似文献   

16.
The ligands 2-(allyl)pyridine(APy), and 2-(1-methallyl)pyridine (1-MAPy) react with [Pt2X4(PEt3)2] (X = Cl or Br), in acetone solution to give complexes of the type [PtX(PEt3)L] [PtX3(PEt3)], (L = APy or 1-MAPy), which contain a bidentate 2-(alkenyl)pyridine, whereas the same reaction in benzene solution gives trans-[PtBr2(PEt3)L], (L = APy or 1-MAPy), which contains a monodentate 2-(alkenyl)pyridine; 1H NMR spectra indicate that both types of product undergo olefin exchange in solution. The same reaction with 2-(3-methallyl)-pyridine [2-(2-butenyl)pyridine] (3-MAPy), 2-(3,3-dimethylallyl)pyridine [2-(3-methyl-2-butenyl)pyridine] (3,3-DMAPy), and 2-(3-butenyl)pyridine (BPy), in either acetone or benzene solution, gives only trans-[PtBr2(PEt3)L]. The reaction of trans-[PtBr2(PEt3)L] (L = APy or 3-MAPy) with AgClO4 gives [PtBr(PEt3)L]ClO4. Complexes of the type [PtCl2L], which contain bidentate 2-(alkenyl)pyridines, result on reaction of L = APy, 3-MAPy, 3,3-DMAPy, BPy, MBPy with [Pt2Cl4(C2H4)2].  相似文献   

17.
Summary New heterobimetallic complexes of nickel, palladium or platinum and the ligand cis-1,2-bis(diphenylphosphine)-ethene, dppen, and tin were prepared. The transition metal is bonded either directly or via chlorine bridges to the tin atom. The compounds were obtained from precursor complexes of the general formula [M(dppen)Cl2] (M = Ni, Pd or Pt) by reaction with Ph3SnH or SnCl2.  相似文献   

18.
The platinum(II) complex [PtMe2(bpy)] (bpy = 2,2′-bipyridine) reacted with a large excess of dihaloalkanes X(CH2)nX (n = 1, X = Cl; n = 4, X = Br) to form the platinum(IV) complexes [PtMe2X{(CH2)nX}(bpy)] (n = 1, X = Cl, 1a; n = 4, X = Br, 1b). The reaction of complexes 1a and 1b with SnBr2 resulted in insertion of SnBr2 into Pt–X (X = Cl, Br) bond to afford the trihalostannyl complexes [PtMe2(SnBr2X){(CH2)nX}(bpy)] (n = 1, X = Cl, 2a; n = 4, X = Br, 2b). The synthesis of such trihalostannylplatinum(IV) complexes is reported for the first time. The complex 2a was decomposed in CH2Cl2 solution and single crystals of [PtBr2(bpy)] (3a) were obtained. The X-ray structure determination of 3a revealed a new polymorphic form of [PtBr2(bpy)]. The molecules undergo a remarkable stacking along the b-axis to form a zigzag Pt?Pt?Pt chain containing both short (3.799 Å) and long (5.175 Å) Pt?Pt separations through the crystal. The crystal structure is compared to that of the yellow modification of [PtBr2(bpy)].  相似文献   

19.
Sodium thiosulfate has been utilized as a rescuing agent for relief of the toxic effects of cisplatin and carboplatin. In this work, we characterized the kinetics of reactions of the trans-dichloro-platinum(IV) complexes cis-[Pt(NH3)2Cl4], ormaplatin [Pt(dach)Cl4] and trans-[PtCl2(CN)4]2? (anticancer prodrugs and a model compound) with thiosulfate at biologically important pH. An overall second-order rate law was established for the reduction of trans-[PtCl2(CN)4]2? by thiosulfate, and varying the pH from 4.45 to 7.90 had virtually no influence on the reaction rate. In the reactions of thiosulfate with cis-[Pt(NH3)2Cl4] and with [Pt(dach)Cl4], the kinetic traces displayed a fast reduction step followed by a slow substitution involving the intermediate Pt(II) complexes. The reduction step also followed second-order kinetics. Reductions of cis-[Pt(NH3)2Cl4] and [Pt(dach)Cl4] by thiosulfate proceeded with similar rates, presumably due to their similar configurations, whereas the reduction of trans-[PtCl2(CN)4]2? was about 1,000 times faster. A common reduction mechanism is suggested, and the transition state for the rate-determining step has been delineated. The activation parameters are consistent with transfer of Cl+ from the platinum(IV) center to the attacking thiosulfate in the rate-determining step.  相似文献   

20.
Decarboxylation reactions between the complexes cis–[PtCl2L] (L = 1, n–bis(diphenylphosphino)–ethane (n = 2, dppe), –propane (n = 3, dppp) or –butane (n = 4, dppb)) and thallium(I) pentafluorobenzoate in pyridine give cis–[PtCl(C6F5)L] and cis–[Pt(C6F5)2L] complexes in high yields with short reaction times. X–ray crystal structures of cis–[PtCl(C6F5)(dppe)] · 0.5 C5H5N, cis–[PtCl(C6F5)(dppp)], cis–[PtCl(C6F5)(dppb)] · C3H6O, cis–[Pt(C6F5)2L] (L = dppe, dppp and dppb) and the reactants cis–[PtCl2(dppp)] (as a CH2Cl2 solvate) and cis–[PtCl2(dppb)] show monomeric structures with chelating diphosphine ligands in all cases rather than dimers with bridging diphosphines. 31P NMR data are consistent with these structures in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号