首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semicarbazone (L1) has been prepared by reaction of semicarbazide and glutaraldehyde (2 : 1) in distilled water and methanol (1 : 1). The reaction of semicarbazide, glutaraldehyde and diethyl oxalate in distilled water and methanol gave Schiff-base L2, 1,2,4,7,9,10-hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone. Complexes of first row transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) have also been synthesized. The ligand and its complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, 1H NMR, UV–Visible spectra and thermogravimetric analysis (TGA). Molar conductance values show that the complexes of Ni(II), Cu(II), Zn(II), Mn(II) and Co(II) are 1 : 2 electrolytes. On the basis of electronic spectral studies and molar conductance measurements an octahedral structure has been proposed for Mn(II) and Co(II) complexes, tetrahedral for Zn(II) complex and square planar for Ni(II) and Cu(II). The thermal behavior of the compounds, studied by TGA in a nitrogen atmosphere up to 800°C, reveal that the complexes have higher thermal stability than the macrocycle. All the synthesized compounds and standard drugs kanamycin (antibacterial) and miconazole (antifungal) have been screened against bacterial strains Staphylococcus areus, Escherichia coli and fungal strains Candida albicans, Aspergillus niger. The metal complexes inhibit growth of bacteria to a greater extent than the ligand.  相似文献   

2.
The production of new biocidal polyester Schiff base metal complexes [PESB–M(II)] via polycondensation reaction between chelated Schiff base diol and adipoyl chloride is reported. The resulting polyesters were characterized by physico-chemical and spectroscopic methods. The analytical data of all the synthesized polyesters were found to be in good agreement with 1:1 molar ratio of chelated Schiff base diol to adipoyl chloride. Thermogravimetric analyses of synthesized polyesters were studied by TG in nitrogen atmosphere up to 1073 K and results indicate that Cu(II) polyester complex exhibited better heat resistant properties than the other polyesters complexes. Magnetic moment and UV–visible spectra were examined to explain the structure of all the polyesters which reveled that Mn(II), Co(II), Ni(II) have octahedral geometry while Cu(II) possess a distorted octahedral geometry. These newly developed polyesters were also tested for their antibacterial activity against several bacteria and fungi. Among all the tested compounds PESB–Cu(II) possess the highest bactericidal and fungicidal activity.  相似文献   

3.
N,N′-bis(salicylidene)thiosemicarbazide Schiff base has been synthesized by the reaction of thiosemicarbazide with salicylaldehyde and then reacted with formaldehyde to generate phenolic groups, resulting in the formation of Schiff-base monomeric ligand. It was further incorporated with transition metals, Mn+2, Co+2, Ni+2, Cu+2, and Zn+2, to form Schiff-base metal complex, which was then polymerized with toluene 2,4-diisocyanate to form metal-chelated polyurethanes. Monomeric ligand, its metal complexes, and its metal polychelates were characterized and compared by elemental analysis, FT-IR, 1H NMR, thermal, and biocidal activities to evaluate the enhancement in physical and chemical properties on coordination with metal and on polymerization. SEM images of ligand and polymer metal complexes showed changes in surface morphology, while electronic spectra of polymer metal complexes were used to predict the geometry. Antimicrobial activities were determined by using agar-diffusion method with Staphylococcus aureus, Escherichia coli, Bacillus subtilis (bacteria), Aspergillus niger, Candida albicans, and Aspergillus flavus (yeast). The polymeric ligand had varied antibacterial and antifungal activities, enhanced after chelation and polymerization. Comparative results show that coordination of metal to the ligand enhances its physical and chemical properties which were meliorated on polymerization.  相似文献   

4.
The polymeric ligand (BFP) was synthesized by condensation of bisphenol-A, formaldehyde, and piperazine in alkaline medium at 70–80°C. The polymer–metal complexes were synthesized by the reaction of BFP with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetates in 1?:?0.5 (ligand?:?metal) molar ratio. All the synthesized polymers were characterized by elemental, spectral (infrared, 1H-NMR, and UV-Vis), magnetic moment measurements, and thermal (TGA) analysis. The ligand-field and nephelauxetic parameters have been determined from UV-Vis spectra using ligand-field theory. Elemental analyses indicate the association of water with metal for Mn(II), Co(II), and Ni(II), which is also supported by TGA. The antimicrobial activities of the synthesized polymers were studied by agar well diffusion methods against Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Shigella boydii. The antimicrobial activity and thermal stability of Cu(II)–polymer were higher than the other polymer–metal complexes due to the higher stability constant of Cu(II).  相似文献   

5.
Schiff-base copper(II) complexes were prepared using macrocyclic ligands, synthesized by condensation of diethylmalonate with Schiff bases derived from o-phenylenediamine and Knoevenagel condensed β-ketoanilides (obtained by the condensation of acetoacetanilide and substituted benzaldehydes). The ligands and their copper complexes were characterized by microanalytical, mass, UV–Vis, IR, 1H-NMR, ESR and CV studies, as well as conductivity data. Microanalytical, mass and magnetic moment analyses are consistent with formation of monomeric [CuL]Cl2. Spectral studies indicate square-planar geometry around copper. The smaller grain sizes found from XRD data suggest that these complexes are polycrystalline with nanosized grains. The SEM images of [CuL1]Cl2 have leaf-like morphology. The in vitro biological screening of the investigated compounds against the bacteria Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus and fungi Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans were tested by the well diffusion method to assess growth inhibition. A comparative study of MIC values of the Schiff-base ligands and their complexes indicate that the complexes exhibit higher antimicrobial activity than the free ligands.  相似文献   

6.
Syntheses, structures, and antimicrobial activities of cobalt(III) complexes with two tetradentate Schiff-base ligands, (BA)2en?=?bis(benzoylacetone)ethylenediimine dianion and (acac)2en?=?bis(acetylacetone)ethylenediimine dianion, and two axial pyridines (py) have been investigated. These complexes were characterized by FT-IR, 1H-NMR, UV-Vis spectroscopy, and elemental analysis. The crystal structures of the complexes were determined by X-ray crystallography. Single-crystal X-ray diffraction analyses revealed that both complexes have distorted octahedral environments, Schiff-base ligand coordinates cobalt in four equatorial positions, and the two axial positions are occupied by pyridines. The pyridines and Schiff-base ligands are involved in N–H···O hydrogen bonds with perchlorate. Biological activities of the ligands and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, and Bacillus subtilis by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species.  相似文献   

7.
Novel polymer metal complexes were prepared by the condensation polymerization of a polymeric ligand with transition metal ions of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The polymeric ligand was prepared by the addition polymerization of urea with toluene 2,4‐diisocyanate in 1:1 molar ratio. The polymeric ligand and its polymer metal complexes were characterized by elemental analysis, Fourier transform infrared spectroscopy, 13C‐NMR, and1H‐NMR (nuclear magnetic resonance). The geometry was determined by electronic spectra and magnetic moment measurement. Thermogravimetric analysis (TGA) was utilized to find out the degradation process of the polyurea ligand and the polymer metal complexes. The TGA data revealed that all the metal‐containing polyureas are much more thermally stable than the corresponding polyurea ligand. The surface morphology of the polyurea ligand and cobalt(II)‐containing polyureas was determined by scanning electron micrographs. The antibacterial and antifungal activities of all the synthesized polymers were investigated against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis (bacteria) and Aspergillus niger, Candida albicans, and Aspergillus flavus (fungi). These compounds show remarkably good biocidal activities, which were enhanced after complexation with the metal. Batch adsorption studies of the ligand were carried out for malachite green dye, and the polyurea ligand was found to be a good adsorbent for this dye. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Ni(II) and Cu(II) metal complexes of simple unsymmetrical Schiff-base ligands derived from salicylaldehyde/5-methylsalicylaldehyde and ethylenediamine or diaminomaleonitrile (DMN) were synthesized. The ligands and their complexes were characterized by elemental analysis, 1H NMR, FT IR, and mass spectroscopy. The electronic spectra of the complexes show d–d transitions in the region at 450–600 nm. Electrochemical studies of the complexes reveal that all mononuclear complexes show a one-electron quasi-reversible reduction wave in the cathodic region. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff = 1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts were also carried out. The in vitro antimicrobial activity of the investigated compounds was tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The antifungal activity was tested against Candida albicans. Generally, the metal complexes have higher antimicrobial activity than the free ligands.  相似文献   

9.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

10.
11.
A new series of metal complexes [M(L)2] (where M = Sn(II), Pb(II), and HL = semicarbazone, thiosemicarbazone or phenylthiosemicarbazone) have been prepared and characterized by elemental analysis, conductance measurements, molecular weight determinations, UV–visible, infrared, and nuclear magnetic resonance (1H-, 13C-, and 119Sn-NMR) spectral studies. Elemental analysis of the metal complexes suggested 1 : 2 (metal–ligand) stoichiometry. Infrared spectra of the complexes agree with coordination to the metal through the nitrogen of the azomethine (>C=N?) and the oxygen/sulfur of the ketonic/thiolic group. Electronic spectra suggest a distorted tetrahedral geometry for all Schiff base complexes. The bond lengths, bond angles, highest occupied molecular orbital, lowest unoccupied molecular orbital, Mulliken atomic charges, and the lowest energy model structure of the complexes have been determined with DFT calculations. Representative Schiff base and its metal chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) and four strains of fungus (Penicillium chrysogenum, Aspergillus niger, Rhizopus nigricans, and Alternaria alternata). The metal chelates possess higher antimicrobial activity than the free ligands.  相似文献   

12.
[Zn(FZ)2Cl2] (1) (FZ = Voriconazole, (2R,3S)-2-(2,4-difluorophenyl)-3(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl)butan-2-ol), has been obtained through the reaction of zinc chloride and FZ and has been characterized by FT-IR, UV–vis and fluorescence spectra, elemental analysis (EA), single crystal X-ray diffraction, powder X-ray diffraction and thermogravimetric analysis (TGA). FZ was also characterized by FT-IR, UV–vis spectra, single crystal X-ray diffraction and TGA. FZ crystallizes in the chiral space group P21 and 1 crystallizes in chiral space group P1 with a mononuclear structure. In 1, there are three kinds of hydrogen bonding interactions and weak stacking interactions which generate a 3-D architecture. The primary antimicrobial results show that 1 exhibits potent activity against Aspergillus (Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus and Aspergillus flavus) and Candida species (Candida albicans, Candida krusei, Candida glabrata and Cryptococcus neoformans), higher than that of free FZ. Fluorescence spectra of 1 and FZ have been discussed.  相似文献   

13.
Glycine metal complexes were prepared by the reaction of glycine with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in 1?:?2 molar ratio. Thereafter their condensation polymerization was done with glutaraldehyde to obtain polymer metal complexes. All the synthesized polymer metal complexes were characterized by elemental analysis, FT-IR, 1H-NMR, and UV-Vis spectrometry, magnetic susceptibility, and thermogravimetric studies. The analytical data of all the polymers agreed with 1?:?1 molar ratio of metal complex to glutaraldehyde and magnetic moment data suggest that PGG–Mn(II), PGG–Co(II), PGG–Ni(II), and PGG–Cu(II) have an octahedral geometry around the metal atom, whereas the tetrahedral geometry was proposed for PGG–Zn(II) polymer. The PGG–Mn(II) and PGG–Cu(II) showed octahedral geometry. Thermal behavior of the polymer metal complexes was obtained at a heating rate of 10°C?min?1 under nitrogen atmosphere from 0°C to 800°C. The antimicrobial activities of synthesized polymers were investigated against Streptococcus aureus, Escherichia coli, Bacillus sphaericus, Salmonella sp. (Bacteria), Fusarium oryzae, Candida albicans, and Aspergillus niger (Yeast).  相似文献   

14.
Abstract

In the present investigation, the bioactive azo-dye ligand 1,5-dimethyl-4-[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl)diazenyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (L) and its transition metal complexes have been synthesized and characterized by various physical and spectroscopic techniques to elucidate their geometrical structures. The molar conductivity measurements confirmed the non-electrolytic nature of the complexes. EPR spectroscopy indicated that the metal complexes are monomeric in nature and exhibited octahedral geometry. The redox behavior of the copper complex was studied by the cyclic voltammetric technique in DMF solution and the complex showed well-established redox behavior at a scan rate of 0.05 V s?1. The antimicrobial activity of the ligand and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Aspergillus niger, and Candida albicans, and the results indicated increased activity after coordination of the ligand to the metal ions. The metal complexes exhibited enhanced antitubercular activity after chelation against M. tuberculosis. The DNA-binding experiments showed that the ligand and its metal complexes showed effective binding properties through intercalative mode against CT-DNA. All the synthesized molecules showed partial cleavage of supercoiled plasmid pUC18 DNA.  相似文献   

15.
New polymeric ligand (resin) was prepared by the condensation of thiosemicarbazides with formaldehyde in the presence of acidic medium. Thisemicarbazide–formaldehyde polymer–metal complexes were prepared with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) in 1:2 metal:ligand molar ratio. The polymeric ligand and its polymer–metal complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), FTIR, 13C NMR and 1H NMR. The geometry of central metal ions was conformed by electronic (UV–vis) and EPR spectra. The antibacterial activities of all the synthesized polymers were investigated against Bacillus subtilis and Staphylococcus aureus (Gram‐positive) and Escherichia coli and Salmonella typhi (Gram‐negative). These compounds showed excellent activities against these bacteria using the shaking flask method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Schiff bases and their complex combinations with metallic ions represent a class of compounds with antimicrobial activity. A ligand was prepared by condensation of the salicylaldehyde with 2‐aminopyridine obtaining 2‐(salicylidene) aminopyridine (SB) with a high capacity for complexing Cu(II) ions. The new compound has been characterized by physical constants (melting point, solubility, stability) and the chemical structure was confirmed by elemental, spectral (IR, UV–visible, 1H NMR and 13C‐NMR) and thermal analyses. The elemental analysis gives a coordination ratio of 1:2 metal:Schiff base. Lethal dose 50 (DL50) values of new Schiff base and their complex with metallic ions were established. The antimicrobial activity of this complex was tested in comparison with the activity of the corresponding Schiff base on strains of Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, Candida albicans, and Klebsiella. These were compared with the activity of the reference drugs (chloramphenicol, tetracycline, ofloxacin and nystatin) on the above‐mentioned strains. It has been established that all compounds tested were very active against both Gram‐positive and Gram‐negative bacteria. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The monomer, trans-2,2′-dihydroxystilbene (DHS), has been prepared by asymmetric photocleavage (254 nm) of coumarin dimer acid derived from coumarin dimer. Four new polyesters are successfully synthesized by interfacial polycondensation of the DHS with adipoyl chloride, azelaoyl chloride, sebacoyl chloride, and dodecanedioyl dichloride, respectively. The reduced viscosities of the polyesters decrease from 0.32 to 0.11 dL/g as the number of methylene unit in diacid chlorides increases from 4 to 10. From DSC investigation, it is found that the polyesters are semi-crystalline polymers with Tm = 39–192°C. Under 350 nm light, photocrosslinking behavior in solution and film-state is investigated by UV spectral change with irradiation time (350 nm). The photoreactive stilbene chromophores in the main chain dimerize to form cyclobutane derivatives, and lead to crosslinking of the polyesters. Photosensitivity in the film state has also been evaluated by their characteristic curves. Polyester from dodecanedioyl dichloride ( 5d ) exhibits the highest initial reaction rate and ultimate crosslinking ratio. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
A novel tetradentate N2O2 type Schiff base, synthesized from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one(4-aminoantipyrine) and 3-salicylidene-acetylacetone, forms stable complexes with transition metal ions such as Cu II , Ni II , Co II and Zn II in ethanol. Microanalytical data, magnetic susceptibility, IR, UV-Vis.,1H-NMR, ESR and Mass spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-planar geometry around the central metal ion. These complexes show higher conductance values, supporting their electrolytic nature. The monomeric nature of the complexes was confirmed from their magnetic susceptibility values. Cyclic voltammogram of the copper(II) and nickel(II) complexes in DMSO solution at 300 K were recorded and the results are discussed. The X-band ESR spectra of the copper complex were recorded and the molecular orbital coefficient values were calculated from the spectra. The in vitro antimicrobial activities of the investigated compounds were tested against bacteria such as Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis and Escherichia coli and fungi like Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates show higher antimicrobial activity for the above microorganisms than that of the free ligand.  相似文献   

19.

Two novel asymmetrical Schiff-base ligands, H2L1 and H2L2, were prepared by reacting two half-unit Schiff-base compounds with 2-methyl-7-formyl-8-hydroxyquinoline. The two half-unit Schiff-base compounds were initially prepared by condensing dimedone with either ethylenediamine or p-phenylenediamine, respectively. Both ligands are dibasic and contain two sets of NO coordinating sites. Twelve metal complexes were obtained by reacting both ligands with Cu(II), Ni(II), Co(II), Mn(II), Fe(III), VO(IV) cations. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis, ESR and mass spectra, also magnetic moments of the complexes were determined. Visible spectra of the complexes indicated distorted octahedral geometries around the metal cations. ESR spectra indicated mononuclear and dinuclear structures of the complexes of ligands H2L1 and H2L2, respectively. Magnetic moments of the complexes were rather low compared with those expected for octahedral geometries and indicated polymeric linkage of the metal complex molecules within their crystal lattices. The insolubility of the metal complexes in most organic solvents support the polymeric structures.  相似文献   

20.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号