首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2-thiazoline-2-thione (TZDSH) with SnR2Cl2 (R=Ph 1, Me 2, Bu 3) in dry ethanol in the presence of sodium ethoxide leads to [SnR2(C3H4NS2)2] (1, 2, and 3), respectively. Reaction between TZDSH and SnPh2Cl2 in dichloromethane and dry ethanol in an inert atmosphere produces [SnPh2Cl2(C3H5NS2)2] (4). The yields of the products were over 80%. These new complexes have been characterized by IR, UV-Vis, multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, and mass spectrometry, as well as elemental analysis.  相似文献   

2.
Four new solvent-induced Cu(II) complexes with the chemical formulae [{Cu(HL)(CH3OH)}2Cu] · CH3OH (1), [{(Cu(HL))2(CH3CH2OH)2}Cu] (2), [{CuL(H2O)}2Cu2] · 2CH3CH2CH2OH (3) and [{(Cu(HL))2(CH3CH2CH2CH2OH)2}Cu] (4), where H4L = 6,6′-dihydroxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol, have been synthesized and characterized by elemental analyses, 1H NMR, FT-IR, UV–Vis spectra, TG-DTA, molar conductances and X-ray crystallography. Complexes 1, 2 and 4 have an elongated square-pyramidal geometry with an unusually long bond from the penta-coordinated Cu(II) centres to the oxygen atoms of the apically coordinated solvent (methanol, ethanol or n-butanol) molecules for the terminal Cu(II) ions, and a square planar geometry distorted tetrahedrally for the central Cu(II) ion. In complex 3, the terminal Cu(II) ions have trigonal bipyramidal coordination geometries constituted by equatorial O2N donor sites, with one oxygen atom from one of the coordinated water molecules and one nitrogen atom from a completely deprotonated L4− ligand unit in the axial positions, and the central Cu(II) ions are in slightly tetrahedrally distorted square planar geometries constituted by four phenoxo oxygen donors from two completely deprotonated L4− ligand units, and these form a tetrametal Cu–O–Cu–O–Cu–O–Cu–O eight-membered ring. These four complexes exhibit strong hydrogen bonding interactions in the solid state. Moreover, co-crystallizing n-propanol molecules link two other adjacent complex molecules into a self-assembled infinite 2D supramolecular structure via the intermolecular hydrogen bonds in complex 3.  相似文献   

3.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

4.
Two metal–organic coordination polymers, [Ag2(imdt)3(OAc)2] n (1) (imdt = 1,3-imidazolidine-2-thione, OAc = CH3COO?) and [Ag(imdt)Cl] n (2), were synthesized under similar conditions by using Et3N (triethylamine) as buffering agent. X-ray diffraction shows that 1 crystallizes in the monoclinic system, C2 /c space group, a = 13.822(5) Å, b = 9.082(3) Å, c = 16.965(6) Å, V = 2114.2(14) Å3, Z = 8, D c = 2.012 g cm?3. Compound 2 crystallizes in the orthorhombic system, P212121 space group, a = 7.993(6) Å, b = 7.993(6) Å, c = 10.548(7) Å, V = 673.9(7) Å3, Z = 4, D c = 2.419 g cm?3. Both 1 and 2 exhibit different architectures due to their different anions. Compound 1 shows a 2-D graphite-like network structure and 2 shows a 3-D diamond-like network structure.  相似文献   

5.
Reaction of (μ 3-S)FeCo2(CO)9 with N-substituted bis(diphenylphosphanyl)amine Ph2PN(R)PPh2 (R?=?CH2CH2CH3, A; CH2Ph, B) at room temperature in CH2Cl2 afforded dicobalt–iron cluster complexes (μ 3-S)FeCo2(CO)7[Ph2PN(R)PPh2] (R?=?CH2CH2CH3, 1; CH2Ph, 2) in 75% and 66% yields, respectively. 1 and 2 were characterized by elemental analysis and spectroscopy. In addition, the molecular structures of A, 1, and 2 were determined by single crystal X-ray diffraction analysis.  相似文献   

6.
Two types of diorganotin(IV) complexes {[R2Sn(O2CC4H3N2)]2O}2 (R = n-octyl 1, 2-ClC6H4CH23, 2-FC6H4CH25, 4-FC6H4CH27) and R2Sn(O2CC4H3N2)2 (R = n-octyl 2, 2-ClC6H4CH24, 2-FC6H4CH26, 4-FC6H4CH28) were prepared by reactions of diorganotin oxide with 2-pyrazinecarboxylic acid. The complexes 1-8 are characterized by elemental analysis, IR and NMR (1H, 13C, 119Sn) spectroscopies. The complexes {[(n-C8H17)2Sn(O2CC4H3N2)]2O}2 (1) and (n-C8H17)2Sn(O2CC4H3N2)2 (2) are also determined by X-ray single crystal diffraction, which reveal that the endo-cyclic tin atom of complex 1, is seven-coordinate, and the exo-cyclic tin atom is hexa-coordinated geometry, while the complex 2 is seven-coordinated geometry. The nitrogen atom of the aromatic ring participates in the interactions with the Sn atom.  相似文献   

7.
The crystal structure of 5-nitro-4-salicylideneamino-3-methyl-1,2,4-triazole-5-thione ([C10H9N5O3S]·HCON(CH3)2, Mr=352.38)(CCDC No. 216094) was determined by the single crystal X-ray diffraction method. The crystal belongs to a triclinic system, the space group is P1 with unit cell constants a=0.6113(2) nm, b=1.0836(4) nm, c=1.3132(5) nm, α=74.523(7)°, β=117.68(3)°, γ= 79.769(7)°, V=0.8245(5) nm3, Z=2, Dc=1.419 g/cm3, μ=0.228 mm-1, F(000)=368, R and wR are 0.0579 and 0.1040, respectively, beasd on 3348 unique reflections of which 1925 reflections were observed[I>2σ(I)]. The results indicate that the title compound can be assigned to the thione tautomeric form rather than the thiol tautomeric form. It contains a five membered triazole ring and a phenyl ring with a dihedral angle of 4.35°. The intermolecular hydrogen bond N3-H3…S1, O1-H1…O4 can be observed.  相似文献   

8.
The reaction of potassium [N′-(2-methyl-benzoyl)-hydrazinecarbodithioate [K+(H2L)?] with metal acetate yielded M(H2L)2 (M = Ni, Cu), which on reaction with excess ethylenediamine (en) formed mononuclear mixed ligand complexes [Ni(en)2(tot)2] (1) and [Cu(en)2](tot)2 (2). The complexes have been characterized by elemental analyses, IR, magnetic susceptibility, and electronic spectral studies. Molecular structures of [Ni(en)2(tot)2] (1) and [Cu(en)2](tot)2 (2) showed 5-(o-tolyl)-[1,3,4]-oxadiazole-2-thione coordinated through oxadiazole nitrogen in 1 and ionically bonded via thiol sulfur in 2.  相似文献   

9.
E-1-(1″-hydroxycarbonylferrocen-1′-yl)-2-(cycloheptatrienyl)ethene (4) was synthesized by using selective transmetallation reactions. Reaction of 4 with [Cp*Ru(CH3CN)3](PF6) revealed the vinylogue monohydro sesquifulvalene complex E-1-(1″-hydroxycarbonylferrocen-1′-yl)-2-{(1?-6?-η-cyclohepta-1?,3?,5?-trien-1?-yl)(η5-pentamethylcyclopentadienyl)ruthenium(II)}ethene hexafluorophosphate (5). X-ray structure analysis demonstrates that complex 5 crystallizes in the triclinic space group , which forms discrete dimers via two hydrogen bonds between the carboxylic functions. Reaction of complex 5 with triethylamine or NaHCO3 generated a new organometallic zwitterion E-1-(1″-oxycarbonylferrocen-1′-yl)-2-{(1?-6?-η-cyclohepta-1?,3?,5?-trien-1?-yl)(η5-pentamethylcyclopentadienyl)ruthenium(II)}ethene (6), which was characterized by UV, IR, and NMR spectra.  相似文献   

10.
A series of mixed-ligand complexes of ruthenium(II) containing 5-methylphenanthroline and trimethylamino-5-methylphenanthroline have been synthesized to investigate the impact of the quaternary amine on the photophysical properties. Thermal stability studies indicate that the quaternary amine is stable with respect to hydrolysis. Mass spectral analysis of the complexes revealed only fragments consistent with homolytic cleavage of the amines and no parent ions were observed. Both electrochemical and photophysical investigations indicate that the quaternary amine has little or no impact on the properties of the complex when compared to complexes lacking the amine.  相似文献   

11.
Kim BH  Lee do N  Park HJ  Min JH  Jun YM  Park SJ  Lee WY 《Talanta》2004,62(3):595-602
A series of o-phenanthroline-substituted ruthenium(II) complexes containing 2,2′-dipyridyl, 2-(2-pyridyl)benzimidazole, 2-(2-pyridyl)-N-methylbenzimidazole, 4-carboxymethyl-4′-methyl-2,2′-dipyridyl, and/or 4,4′-dimethyl-2,2′-dipyridyl ligands were synthesized and examined as potent electrochemiluminescent (ECL) materials. The characteristics of these complexes, regarding their electrochemical redox potentials and relative ECL intensities for tripropylamine were studied. As found in a 2,2′-bipyridyl-substituted ruthenium(II) complexes, a good correlation between the observed ECL intensity and the donor ability of α-diimine ligands was observed, i.e., the ECL intensity of the Ru(II) complex decreased with an increase in the ligand donor ability. The ECL efficiency increased as the number of substitutions of o-phenanthroline (o-phen) to metal complexes increased.  相似文献   

12.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

13.
Reactions of equimolar solutions of copper(I) halides with 1-methyl-1,3-imidazoline-2-thione (SC4H6N2) in acetonitrile have yielded a trinuclear complex, {Cu31-Br)3(μ-SC4H6N2)3} · CH3CN 1, and 1D polymer, {Cu2(μ-I)2(μ-SC4H6N2)2}n2. The thio-ligands/halogens adopt μ-S, η1-X or μ-X modes. There is weak interaction between trinuclear units {Cu···Br, 3.025 Å} and Cu···Cu contacts lie in the range, 2.974(2)–3.650(2) Å. Polymer 2 has alternating Cu2I2 and Cu2S2 cores involving sulfur/iodine bridging in a twisted ribbon type arrangement with short Cu···Cu distances {2.6912(9) and 2.785(9) Å}, respectively. The polynuclear complexes in dimethyl sulfoxide exhibit intense fluorescent bands {λem = 319 (1) and 322 (2)}.  相似文献   

14.
Three new ruthenium(II)-arene halido complexes, [(η6-p-cymene) RuX(L)] (1–3), were synthesized in a reaction of [(η6-p-cymene)RuX2]2 with 5-chloro-1H-benzimidazole-2-carboxylic acid (HL) in ethanol (X = Cl (1), Br (2), I (3)). The complexes were characterized by elemental analysis, mass spectrometry, IR, 1H and 13C NMR spectroscopy. The cytotoxic activity of the ligand precursor and its ruthenium complexes was tested by MTT assay in human cancer cell lines: lung adenocarcinoma (A549), myelogenous leukemia (K562) as well as in one normal human fetal lung fibroblast cell line (MRC-5). The results show that ruthenium(II)-arene complexes possess enhanced cytotoxicity when compared to HL in the range of concentrations up to 300 µM. In terms of halido ligand substitution, cytotoxic activity toward A549 and K562 cell lines in 1–3 serie significantly increased (e.g., IC50 values for K562: 1: 205.76 µM; 2: 174.77 µM; 3: 83.97 µM). All studied compounds were found to be ineffective toward MRC-5. Hydrolysis of 1–3 was followed by UV-vis spectroscopy at 25?°C, revealing ligand-substitution reactions at the Ru(II) center. Compounds 2 and 3 underwent rapid hydrolysis ranging from a few minutes for the aquation to ca. 20?min, confirming typical Ru-arene behavior in aqueous solutions.  相似文献   

15.
Several manganese carboxylates complexes having PziPr2H (3,5-diisopropylpyrazole), TpPh,Me (hydrotris(3-phenyl,5-methyl-pyrazol-1-yl)borate), Tpipr2 (hydrotris(3,5-diisopropyl-pyrazol-1-yl)borate) as supporting ligands have been synthesised and structurally characterized. Single-crystal X-ray diffraction studies suggest that the manganese center in complexes (PziPr2H)4Mn(NO2–OBz)2 (5) and (PziPr2H)4Mn(F–OBz)2 (6) have same coordination environment and geometry whereas the complex [TpPh,MeMn(OAc)PzPh,MeH] (7) has a five coordinate manganese center. In all these complexes, the carboxylate groups are coordinated as monodentate and the uncoordinated oxygen atom of the carboxylate groups form intramolecular hydrogen bonds with the NH group of the corresponding coordinated pyrazole (PziPr2H/PzPh,MeH). The complexes 5–8 and 10 were tested for their superoxide dismutase activity and it was found that only complex 7 has SOD activity as its structure is very similar to the active site structure of the native Mn–SOD enzyme. The SOD activity studies on these carboxylate complexes suggest that any model compound with analogous active site structure and intramolecular hydrogen bonding may be a suitable mimic for the Mn–SOD enzyme.  相似文献   

16.
Thermal reaction of [Ru3(CO)12] with PH2Mes (Mes = mesityl) in refluxing toluene afforded mesitylphosphinidene-capped ruthenium carbonyl clusters, [Ru3(CO)9(μ-H)23-PMes)] (1), [Ru3(CO)8(PH2Mes)(μ-H)23-PMes)] (2), [Ru3(CO)93-PMes)2] (3), [Ru4(CO)10(μ-CO)(μ4-PMes)2] (4), and [Ru5(CO)10H24-PMes)(μ3-PMes)2] (5). All products were fully characterized and structurally confirmed by X-ray crystal structure analysis. Complexes 2-4 were also obtained in high yields by stepwise reaction starting from 1. Fluxional behavior of carbonyl groups was observed in case of 4. Complex 5 reveals a new type of skeletal structure, bicapped-octahedron having μ3- and μ4-phosphinidene ligands at the capping positions. Similar reaction of [Os3(CO)12] with PH2Mes yielded a phosphido-bridged osmium cluster [Os3(CO)10(μ-H)(μ-PHMes)] (6) and a phosphinidene-capped cluster [Os3(CO)9(μ-H)23-PMes)] (7).  相似文献   

17.
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography.  相似文献   

18.
The interactions of 1-hydroxopyridine-2-thione or 2-mercaptopyridine N-oxide (LH) with transition and d10 metal ions have been investigated. The complexes [RhL3] and [ML2] (M = Pd, Cd and Hg) were characterized by physicochemical and spectroscopic methods. The bis(1-oxopyridine-2-thionato)palladium(II) chloroform solvate crystallizes in space group Pna21 with a = 9.1569(15), b = 21.306(3), c = 8.4618(14) Â, Z = 4. The structure can be described in terms of rows of bis(2-mercaptopyridine N-oxide) palladium(II) molecules which alternate with another row of molecules at an angle of approximately 24.9°. The coordination geometry about palladium(II) is nearly square-planar.  相似文献   

19.
The reaction of Ru3(CO)12 with 3,3 dimethylthietane (DMT) at 68°C yielded the new tetraruthenium cluster complex Ru4(CO)12(-SCH2CMe2CH2)2,1 in 23% yield. Compound1 was characterized crystallographically and was shown to consist of a puckered square of four ruthenium atoms with two DMT ligands bridging opposite sides of the cluster via the sulfur atoms. Compound1 reacts with CO (98°C/1 atm) to yield the new tetraruthenium complex Ru4(CO)13 (-SCH2CMe2CH2),2 in 69% yield. Compound2 consists of a butterfly tetrahedral cluster of four ruthenium atoms with a DMT ligand bridging the wing-tip metal atoms. Addition of DMT to2 regenerates1 in 67% yield. Crystal data—1: space group = ,a=17.490(2) Å,b=18.899(3) Å,c=9.781(1) Å, =93.06(1)°, =91.06(1)°, =105.239(9)°,Z=4, 5799 reflections,R=0.026; for2: space group = P21/n,a=15.430(3) Å,b=18.285(4) Å,c=9.850(2) Å, =90.05(2)°,Z=4, 2111 reflections,R=0.036.  相似文献   

20.
Treatment of [(p-cymene)RuCl2]2 with HSp-Tol or HSCH2Ph in the presence of K[PF6] gave the cationic dinuclear cymene–ruthenium(II) complexes [(p-cymene)2Ru2(μ-Cl)(μ-Sp-Tol)2][PF6] (1) and [(p-cymene)2Ru2(μ-Cl)(μ-SCH2Ph)2][PF6] (2), respectively, which have been characterized by IR, NMR spectroscopies and mass spectrometry along with microanalyses. Their crystal structures were determined by single-crystal X-ray diffraction analyses. The structures of the cationic complexes contain the unusual pseudo-trigonal-bipyramidal Ru2S2Cl framework without a ruthenium–ruthenium single bond. The two p-cymene–ruthenium units are held together by two bridging thiolates and one bridging chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号