首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

2.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

3.
Crystal Structures and Vibrational Spectra of Tetrahalogenoacetylacetonatoosmates(IV), [OsX4(acac)]?, X ? Cl, Br, I By reaction of the hexahalogenoosmates(IV) with acetylacetone the tetrahalogenoacetylacetonatoosmates(IV) [OsX4(acac)]? (X = Cl, Br, I) are formed, which have been purified by chromatography and precipitated from aqueous solution as tetraphenylphosphonium (Ph4P) or cesium salts. X-ray structure determinations on single crystals have been performed of (Ph4P)[OsCl4(acac)] ( 1 ) (triclinic, space group P1 , a = 9.9661(6), b = 11.208(2), c = 13.4943(7) Å, α = 101.130(9), β = 91.948(6), γ = 96.348(8)°, Z = 2), (Ph4P)[OsBr4(acac)] ( 2 ) (monoclinic, space group P21/n, a = 9.0251(8), b = 12.423(2), c = 27.834(2) Å, β = 94.259(7)°, Z = 4) and (Ph4P)[OsI4(acac)] ( 3 ) (monoclinic, space group P21/c, a = 18.294(3), b = 10.664(2), c = 18.333(3) Å, β = 117.68(2)°, Z = 4). Due to the increasing trans influence in the series O < Cl < Br < I the Os? O. distances of O.? Cl? X′ axes are lengthened and the OsO. stretching vibrations are shifted to lower frequencies. The Os? X′ bond lenghts are shorter as compared with symmetrically coordinated X? Os? X axes.  相似文献   

4.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of Four Linkage Isomeric Tetrachlorodirhodanoosmates(IV) By treatment of cis- or trans-[OsCl4I2]2? with (SCN)2 in dichloromethane the linkage isomers cis-[OsCl4(NCS)2]2? ( 1 ), trans-[OsCl4(NCS)(SCN)]2? ( 2 ), cis-[OsCl4(NCS)(SCN)]2? ( 3 ) and trans-[OsCl4(SCN)2]2? ( 4 ) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determinations on single crystals of cis-(Ph4As)2[OsCl4(NCS)2] (triclinic, space group P1 , a = 10.019(5), b = 11.702(5), c = 21.922(5) Å, α = 83.602(5)°, β = 85.718(5)°, γ = 73.300(5)°, Z = 2), trans-(Ph4As)2[OsCl4 · (NCS)(SCN)] (monoclinic, space group P21/c, a = 18.025(5), b = 11.445(5), c = 23.437(5) Å, β = 94.208(5)°, Z = 4), cis-(Ph4As)2[OsCl4(NCS)(SCN)] (triclinic, space group P1 , a = 10.579(5), b = 11.682(5), c = 22.557(5) Å, α = 81.073(5)°, β = 85.807(5)°, γ = 87.677(5)°, Z = 2) and trans-(Ph4As)2 · [OsCl4(SCN)2] (triclinic, space group P1 , a = 10.615(5), b = 11.691(5), c = 11.907(5) Å, α = 111.314(5)°, β = 96.718(5)°, γ = 91.446(5)°, Z = 1) reveal the complete ordering of the complex anions. The via N or S coordinated thiocyanate groups are located nearly direct above one of the cis-positioned Cl ligands with Os? N? C angles of 171.2° and 174.3° ( 1 ), 162.3° ( 2 ), 172° ( 3 ) and Os? S? C angles of 108.3° ( 2 ), 105.7° ( 3 ) and 105.5° ( 4 ). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four linkage isomers are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(OsN) = 1.59 ( 1 ), 1.67 ( 2 ), 1.60 ( 3 ) and fd(OsS) = 1.27 ( 2 ), 1.31 ( 3 ) and 1.32 mdyn Å?1 ( 4 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

5.
The reaction of Ph2PCl and PhPCl2 with bis(trimethylsilyl)sulfur diimide in the presence of GaCl3 and AlCl3 yields diadducts of the corresponding cyclodiphosph(V)azene: [Ph2PN]2·(GaCl3)2 ( 1 ), [Ph2PN]2·(AlCl3)2 ( 2 ), and [Ph(Cl)PN]2·(AlCl3)2 ( 3 ). This reaction is triggered by Lewis acids, which catalyse the (CH3)3Si‐Cl and S8 elimination. The structures of 1· 2 CH2Cl2, 2· 2 CH2Cl2 and 3 were determined by single crystal X‐ray studies ( 1 : triclinic, , a = 9.679(2) Å, b = 9.863(2) Å, c = 11.366(2) Å, α = 113.55(3)°; β = 99.59(3)°; γ = 106.67(3)°; V = 902.8(3) Å3, Z = 1; 2 : triclinic, , a = 9.639(2) Å, b = 9.804(2) Å, c = 11.321(2) Å, α = 113.71(3)°; β = 99.44(3)°; γ = 106.70(3)°; V = 889.3(3) Å3, Z = 1; 3 : orthorhombic, Pbca, a = 14.853(3) Å, b = 9.261(2) Å, c = 16.631(3) Å, V = 2287.7(8) Å3, Z = 4.  相似文献   

6.
Crystal and Molecular Structure of Tetramethyl(dimethylthiophosphinato)stiborane (CH3)4SbOP (S) (CH3)2 (CH3)4SbOP(S)(CH3)2 crystallizes in the triclinic space-group P1 with a = 7.125, b = 9.297, c = 18.861 Å, α = 77.44°, ß = 83.86°, γ = 79.91° and four formula units per cell. Stibonium is distorted trigonal-bipyramidal and phosphorous distorted tetrahedral surrounded. The mean values of bondlengths are: Sb? Ceq = 2.108, Sb? Cax = 2.147, Sb? O = 2.641, P? C = 1.819, P? O = 1.514, and P? S = 1.987 Å.  相似文献   

7.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

8.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

9.
The structures of [RhCl(CO) ( 1 )] and [PdCl2 ( 1 )], where 1 is the bidentate ligand (C6H5)2P·CH2·C18H10· CH2·P(C6H5)2, have been determined from threedimensional X-ray counter data collected on single crystals of the C6H5·CN solvates. The two compounds are isomorphous and crystallize in the triclinic system, space group P 1 , Z = 2: a = 14.580 (8), b = 13.029 (10), c = 11.909 (6) Å, α = 106.33 (5), β = 100.47 (4), γ = 95.73 (5)° for the rhodium complex; a = 14.361 (5), b = 13.044 (7), c = 11.897 (4) Å, α = 105.97 (4), β = 100.27 (3), γ = 94.76 (4)°, for the palladium complex. In both complexes the metal atom is four-coordinate with slightly distorted square-planar configuration. In both cases the ligand 1 spans trans positions with M-P bond lengths in the ranges of the literature data. Also the other bond distances fall in regular ranges. Ligand 1 has almost the same conformation in both complexes and is characterized by a strong out-of-plane deformation of the benzophenanthrene system as a consequence of severe overcrowding.  相似文献   

10.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

11.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

12.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

13.
The iron(III) complexes of the tripodal benzimidazole‐containing ligands tris(2‐benzimidazolylmethyl)amine (ntb), bis(2‐benzimidazolylmethyl)(2‐hydroxyethyl)‐amine (bbimae) and tris(5,6‐dimethyl‐2‐benzimidazolylmethyl)amine (me2ntb) are structural and functional models for intradiol cleaving catechol dioxygenases. The complexes [Fe(ntb)Cl2]Cl · 3 CH3OH ( 1 ; P 1, a = 9.830(2) Å, b = 12.542(3) Å, c = 13.139(3) Å, α = 82.88(3)°, β = 73.45(3)°, γ = 85.53(3)°, V = 1539.2(6) Å3; Z = 2) and [Fe(bbimae)Cl2]Cl ( 2 ; P21/n, a = 7.461(2) Å, b = 18.994(5) Å, c = 14.515(4) Å, β = 98.22(2)°, V = 2035.8(9) Å3, Z = 4) have been characterized by X‐ray crystallography and spectroscopic methods. In the octahedrally coordinated complexes two cis coordination sites – essential for catechol binding – are occupied by chloride ligands. The significant intradiol cleaving catechol dioxygenase activity of the model complexes was examined using 3,5‐di‐tert‐butylcatechol as a substrate.  相似文献   

14.
The complexes [NO2BzPz]2[Ni(mnt)2] (1) and [BrBzPz]2[Pd(mnt)2] (2) have been prepared by reaction of Na2mnt, NiCl2·6H2O or PdCl2, and the corresponding 1-(R-benzyl)pyrazinium bromide salt (R = 4′-nitro, R = 4′-bromo). Crystallographic data for 1: monoclinic, P21/n, a = 7.3494(15), b = 15.223(3), c = 15.054(3)?Å, β = 102.42(3)°, V = 1644.8(6)?Å3, Z = 2. Data for 2: monoclinic, P21/n, a = 7.399(2), b = 19.024(4), c = 12.224(2)?Å, β = 94.62(3)°, V = 1715.0(7)?Å3, Z = 4. In both complexes, the [M(mnt)2]2? anion has a centre of symmetry at the metal atom and two cations are related to each other by the symmetry centre. The [M(mnt)2]2? anion exhibits a quasi-planar structure in both complexes, which show similar crystal packing.  相似文献   

15.
One-electron oxidized zirconium chloride clusters were obtained from solid state precursors Rb5Zr6Cl18B and K3Zr6Cl15Be by dissolution in CH3CN in the presence of Et4NCl and isolated as the salts (Et4N)4Zr6Cl18B · 2 CH3CN and (Et4N)5Zr6Cl18Be · 3 CH3CN. (Et4N)4Zr6Cl18B · 2 CH3CN crystallizes in the space group P1 (#2) with a = 12.329(5) Å, b = 12.657(6) Å, c = 13.136(8) Å, α = 118.28(4)°, β = 93.45(4)°, γ = 105.54(3)°, V = 1696(2) Å3, and Z = 1. (Et4N)5Zr6Cl18Be · 3 CH3CN was refined in the space group C2/c (# 15) with a = 24.166(11) Å, b = 13.265(6) Å, c = 25.86(2) Å, β = 104.21(4)°, V = 8037(7) Å3, and Z = 4; the space group reflects the pseudo-symmetry of the crystal, the true symmetry of the structure is lower. The removal of one electron from the Zr? Zr bonding HOMO of both clusters results in cluster expansion of similar magnitude in both compounds. Moisture from the added Et4NCl is the likely oxidant, but the possibility that acetonitrile may be reduced by [(Zr6Be)Cl18]6? is not ruled out.  相似文献   

16.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

17.
A new zinc phosphite with the formula Zn3(tren)(HPO3)3·xH2O (x≈0.5) has been synthesized under hydrothermal conditions and characterized by FTIR, elemental analysis, powder X‐ray diffraction, single‐crystal X‐ray diffraction, thermogravimetric analysis and its fluorescent spectrum. The compound crystallizes in the triclinic system, space group (No.2), a = 10.1188(9) Å, b = 10.4194(9) Å, c = 10.5176(9) Å, α = 60.763(2)°, β = 70.6150(10)°, γ = 80.725(2)°, V = 912.77(14) Å3, Z = 2. The structure consists of double crankshaft chains, which are linked by Zn‐O‐P bonds to form 8‐ and 12‐membered channels along the [100] direction. The claw‐like Zn‐centered complexes of Zn(N4C6H18) as the supported templates, hang into the 12‐MR channels through Zn‐O‐P linkages with framework.  相似文献   

18.
Synthesis and Crystal Structure of the Adducts [DB-18C6] · CH3CN · CH3CSOH and [DC-18C6](CH3CSOH)2 as well as of the Salt-like Compounds [Cs(B-15C5)2]CH3CSS and [Cs(DB-18C6)]2S5(DMF)21) The reaction products of crown ethers, cesium, and sulfur in aprotic solvents like acetonitrile and dimethylformamide strongly depend on the reaction conditions. Using CH3CN as a solvent, sometimes neutral host-guest adducts crystallize only, e.g., [dibenzo-18C6] · CH3CN · CH3CSOH (monoclinic, S. G. P21/c, Z = 4, a = 9.73(1) Å, b = 22.03(1) Å, c = 11.86(1) Å, β = 91.8(1)°) or [dicyclohexyl-18C6](CH3CSOH)2 (monoclinic, S. G. P21/n, Z = 2, a = 7.75(1) Å, b = 10.32(1) Å, c = 17.73(1) Å, β = 95.7(1)°). The monothioacetic acid, CH3CSOH, must be regarded as the first product of the hydrolysis of CH3CN. Furthermore, another product of this kind of hydrolysis, CH3CSSH, is obtained too. Therefore, we also obtain the salt-like compound [Cs(benzo-15C5)2]CH3CSS (monoclinic, S. G. C2/c, Z = 4, a = 16.05(1) Å, b = 16.73(1) Å, c = 13.11(1) Å, β = 106.3(1)°). If the solvent DMF is used, the pentasulfide [Cs(dibenzo-18C6)]2S5(DMF)2 crystallizes (monoclinic, S. G. P21/n, Z = 4, a = 14.79(1) Å, b = 14.24(1) Å, c = 25.74(1) Å, β = 92.7(1°. The S52? anions show the cis-conformation.  相似文献   

19.
The reaction of cobalt powder with iodine activated by tetraphenyldithioimidodiphosphorane (Ph2P(S)NHP(S)Ph2) ( L H) gives the complex Co L 2 ( 1 ). Its solid‐state structure [triclinic, space group P1 (No. 2), Z = 2, a = 13.321(2) Å, b = 13.872(2) Å, c = 14.394(3) Å, α = 82.500(10)°, β = 65.950(10)°, γ = 69.640(10)°] comprises discrete, monomeric molecules where a CoII ion is coordinated to four sulphur atoms by two bidentate anionic ligands L in a distorted tetrahedral CoS4 core. The electrochemistry of L H · I2 and Co L 2 has been studied by cyclic voltammetry. FT‐IR, Raman, 31P‐NMR spectroscopies, are in accordance with the structural features of the complex. Hybrid‐DFT calculations have been used to gain an insight on the π properties of L H and L .  相似文献   

20.
A variety of [Ru(CO)2L(η4enone)] complexes (L = phosphines, phosphites, and arsines, enone = (E)-4-phenylbut-3-en-2-one) have been synthesized. 1H-, 13C-, and 31P-NMR spectra are reported and the X-ray structures of two Ru complexes with L ? Ph3P(7), Et3P ( 10 ) and one Fe complex with L ? Ph3P ( 14 ) are presented. All three compounds crystallize in the same monoclinic space group P21/n with a = 10.575(2) Å, b =9.213(2) Å, and c = 27.608(5) Å, β = 100.04(2)°, Z = 4 for 7 , a = 10.276(3) Å, b = 12.935(3) Å, and c = 14.854(2) Å, β = 96.96(2)°, Z = 4 for 10 , and a = 10.492(2) Å, b = 9.232(3) Å, and c = 27.129(3) Å, β = 98.67(2)°, Z = 4 for 14 . The structures of the Ru complexes are compared with the Fe analogues. In the case of M ? Ru and L ? (EtO)3P, (MeO)3P, and (i-PrO)3P ( 9 , 11 , and 13 , respectively) stereoisomers could be detected by 31P-NMR at room temperature, wich arise from rotation at the coordinated metal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号