首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

A series of cationic platinum(II) complexes of the type [Pt(mmap)R'R"S)Cl](NO3) and [Pt(dhq)2(R'R"S)Cl]-(NO3) (where mmap=1-methyl-4-(methylamino)piperidine; dhq=decahydroquinoline; and R'R"S=dimethylsulfide, diethylsulfide, diisopropylsulfide, diphenylsulfide, dibenzylsulfide, methylphenylsulfide or methyl-p-tolylsulfide) has been synthesized and characterized by elemental analysis, infrared, 1H and 195Pt nuclear magnetic resonance spectroscopic techniques.  相似文献   

2.
The reaction of a mixture of cis and trans-[PtCl2(SMe2)2] with 4,7-phen (4,7-phen = 4,7-phenanthroline) in a molar ratio of 1 : 1 or 2 : 1 resulted in the formation of mono and binuclear complexes trans-[PtCl2(SMe2)(4,7-phen)] (1) and trans-[Pt2Cl4(SMe2)2(μ-4,7-phen)] (2), respectively. The products have been fully characterized by elemental analysis, 1H, 13C{1H}, HHCOSY, HSQC, HMBC, and DEPT-135 NMR spectroscopy. The crystal structure of 1 reveals that platinum has a slightly distorted square planar geometry. Both chlorides are trans with a deviation from linearity 177.66(3)°, while the N–Pt–S angle is 175.53(6)°. Similarly, the reaction of a mixture of cis and trans-[PtBr2(SMe2)2] with 4,7-phen in a 1 : 1 or 2 : 1 mole ratio afforded the mono or binuclear complexes trans-[PtBr2(SMe2)(4,7-phen)] (3) and trans-[Pt2Br4(SMe2)2(μ-4,7-phen)] (4), respectively. The crystal structure of trans-[Pt2Br4(SMe2)2(μ-4,7-phen)].C6H6 reveals that 4,7-phen bridges between two platinum centers in a slightly distorted square planar arrangement of the platinum. In this structure, both bromides are trans, while the PtBr2(SMe2) moieties are syn to each other. NMR data of mono and binuclear complexes of platinum 14 show that the binuclear complexes exist in solution as a minor product, while the mononuclear complexes are major products.  相似文献   

3.
Several palladium(II) and platinum(II) complexes of tripropylarsanes (AsR3; R = Pr, iPr) with the formulae, [MCl2(AsR3)2], [M2Cl2(μ‐Cl)2(AsR3)2], [Pd2Me2(μ‐Cl)2(AsR3)2], [Pd2X2(μ‐Pz)2(AsR3)2] (X = Cl or Me, Pz = pyrazolate), [Pd2Cl2(μ‐Y)2(AsR3)2] (Y = OAc or SPh), [MCl(S2CNEt2)(AsR3)] and [PdCp(Cl)(AsiPr3)] (M = Pd or Pt) have been prepared. All the complexes have been characterised by elemental analyses, IR and 1H NMR spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The structures of [Pd2Me2(μ‐X)2(AsiPr3)2] (X = Cl or Pz) have been established by single crystal X‐ray diffraction analyses. Both of the complexes have sym‐trans configuration. Strong trans influence of the methyl group is reflected on the Pd—X bond distances.  相似文献   

4.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

5.
Reactions PtI2L (L = P,P-bonded 1,2-bis ((2-pyridyl)phosphino(ethane, d(py)pe, or 1,2-bis ((2-pyridyl)phosphino)cyclopentane, d(py)pcp) with excess AgNO3 in acetic acid/ethanol afford the polymers [Pt2(d(py)pe)2Ag4(NO3)8(H2O)2]n(1 ) and [Pt2(d(py)pcp)2Ag6(NO3)10] n (2), respectively, which contain Pt2L 2 4+ cores with each L ligand nowP,N-bridging two Pt-atoms; these Pt2 cores are connected via bridging AgNO3 clusters, the Ag being bound to the pyridyl-N or nitrate-O atoms. X-ray crystallographic data reveal Pt–Pt contacts of 2.76 Å indicative of bonding.  相似文献   

6.
Cisplatin analogues, cis-dichloro(ethylenediamine-N,N′-di-3-propanoic acid)platinum(II) (1) and cis-iodo(ethylenediamine-N,N′-di-3-propanoic acid)platinum(II) (2), as well as trans-dichloro-(ethylenediamine-N,N′-di-3-propanoato)platinum(IV) (3), trans-dibromo(ethylenediamine -N,N′-di-3-propanoato)platinum(IV) (4), trans-dichloro(propylenediamine-N,N′-diacetato)-platinum(IV) (5) and trans-dibromo(propylenediamine-N,N′-diacetato)platinum(IV) (6), -([Pt(H2eddp)Cl2], [Pt(Heddp)I], trans-[Pt(eddp)Cl2], trans-[Pt(eddp)Br2], trans-[Pt(pdda)Cl2] and trans-[Pt(pdda)Br2], respectively) were used to assess antitumor selectivity against human adenocarcinoma HeLa cells. The results show that different oxidation states of platinum, different halide ligands, chelating aminocarboxylato and diamine backbones have similar effects with edda-type ligands and activity is lower than for cisplatin.  相似文献   

7.
Four dinuclear cadmium(II) complexes, [Cd2(L1)(μ2-Cl)Cl2] (1), [Cd2(L2)(μ2-Cl)Cl2] (2), [Cd2(L3)(μ2-Cl)Cl2] (3), and [Cd2(L4)3ClO4] (4), where HL1 = 4-methyl-2,6-bis(1-(2-piperidinoethyl)iminomethyl)-phenol, HL2 = 4-methyl-2,6-bis(1-(2-pyrrolidinoethyl)iminomethyl)-phenol, HL3 = 4-methyl-2,6-bis(1-(2-morpholinoethyl)iminomethyl)-phenol and HL4 = 4-methyl-2,6-bis(cyclohexylmethyl)iminomethyl)-phenol, were synthesized. They were characterized by elemental analysis, FT-IR, UV–Vis, fluorescence and electronspray ionization mass spectroscopy. Complexes 1 and 4 were also characterized by single crystal X-ray analysis. The cadmiums atoms in 1 are linked by μ2-chloride in a distorted square pyramidal geometry, whereas cadmium atom in 4 is in a distorted octahedral environment. The complexes show emission bands around 500 nm with excitation at 395 nm.  相似文献   

8.
Preparations of trans-[PtX2(Imt)2] (Imt =?2-imidazolidinethione, X=Cl? or I?) and [Pt(Imt)4]I2 are described. These complexes were characterized by elemental analysis, thermal analysis, mid- and far-IR spectroscopy, and NMR (1H and 13C) spectroscopy. The crystal and molecular structure of [Pt(Imt)4]I2 ·?DMSO ·?H2O was determined by X-ray diffraction methods. The structural data reveal the following features: (a) the platinum atom in [Pt(Imt)4]2+ is essentially in a square-planar environment, (b) the entire dication possesses approximately C 2h symmetry, (c) no appreciable hydrogen bonding exists between the iodide ions and the Imt ligands in the dication, (d) two pairs of two mutually cis Imt ligands are arranged above and below the PtS4 plane, respectively, and (e) two planes defined by two trans Imt rings are perpendicular to each other.  相似文献   

9.

In an attempt to synthesize the complex [Fe(CN)5(N2)]3- by reaction of Na[Fe(CN)5(NO)]·2H2O with azide followed by treatment with NO[SbCl6], a similar method to that used by Feltham to obtain trans-[RuCl(N2)(das)2]Cl2 from trans-[RuCl(NO)(das)2]Cl2, we found spectroscopic evidence that excess azide reacts with the CN- ligands to generate tetrazolato groups C-coordinated to Fe. Initial results suggest that the obtained compound is sodium azidotris(2H-tetrazolato)(5H-tetrazolato)iron(0). The spectroscopic evidence also indicates that these heterocycles are destroyed by reaction with NO[SbCl6], and the CN- groups are regenerated. Here we present the characterization of these complexes by IR, 13C NMR, conductivity measurements, elemental analysis and magnetic susceptibility.  相似文献   

10.
Red single crystals of Pt2(HSO4)2(SO4)2 were obtained by the reaction of elemental platinum with conc. sulfuric acid at 350 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/c, Z = 2, a = 868.6(2), b = 826.2(1), c = 921.8(2) pm, β=116.32(1)°, Rall = 0.0348) shows dumbbell shaped Pt26+ cations which are coordinated by four SO42— and two HSO4 ions. Each of the sulfate ions is attached to another Pt26+ ion yielding layers according to equation/tex2gif-stack-1.gif[Pt2(SO4)4/2(HSO4)2/1]. The layers are connected by hydrogen bonds with the OH group of the hydrogensulfate ion as donor and the non‐bonding oxygen atom of the sulfate ion as acceptor.  相似文献   

11.

The complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react in CH2Cl2 at room temperature with two equivalents of 4,4'-diphenylenecarbonitrile (dpc) to afford the new seven-coordinate complexes, [MI2(CO)3(4,4'-dpc-N)2] (1 and 2) in good yield. Equimolar quantities of [MI2(CO)3(NCMe)2] and PPh3 give [MI2(CO)3(NCMe)(PPh3)], which react in situ with 4,4'-dpc to yield the mono-4,4'-diphenylenecarbonitrile complexes, [MI2(CO)3(4,4'-dpc-N)(PPh3)] (3 and 4). Treatment of the bis(alkyne) complexes, [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) with one equivalent of 4,4'-dpc in CH2Cl2 at room temperature affords the acetonitrile displaced products, [WI2(CO)(4,4'-dpc-N)(η 2-RC2R)2] (5 and 6). Reaction of equimolar quantities of [WI2(CO)(NCMe)(η 2-PhC2Ph)2] and 2 in CH2Cl2 at room temperature gives the 4,4'-dpc-bridged complex, [WI2(CO){WI2(CO)3(4,4'-dpc-N)(4,4'-dpc- N,N')}(η 2-PhC2Ph)2] (7) in good yield. Similarly, equimolar amounts of [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) and (4) react in CH2Cl2 to afford the bimetallic complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(PPh3)}(η 2-RC2R)2] (8 and 9). The new bimetallic 4,4'-dpc-bridged alkyne complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-MeC2Me)2] [(10), [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-PhC2Ph)2}(η 2-PhC2Ph)2] (11) and [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-PhC2Ph)2] (12) are also described.  相似文献   

12.
A series of new platinum(II) and platinum(IV) complexes of the type [PtII(HMI)2X] (where HMI=hexamethyleneimine, X=dichloro, sulfato, 1,1-cyclobutanedicarboxylato [CBDCA], oxalato, methylmalonato, or tatronato) and [PtIV(HMI)2Y2Cl2] (where Y=hydroxo, acetato, or chloro) were synthesized and characterized by infrared (IR) spectroscopy, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Among the complexes synthesized, [PtII(hexamethyleneimine)2(1,1-cyclobutanedicarboxylato)]·H2O was examined by single-crystal X-ray diffraction. The slightly distorted square planar coordination environment of the platinum metal includes the amino group of the hexamethyleneimine (HMI) molecule and the oxygen atoms of the carboxylato ligand. The cyclobutanedicarboxylic acid (CBDCA) molecule adopts six-member chelating rings with platinum. Hydrogen bonding plays an important part in holding the crystal lattice together.  相似文献   

13.
The ligands 2-(allyl)pyridine(APy), and 2-(1-methallyl)pyridine (1-MAPy) react with [Pt2X4(PEt3)2] (X = Cl or Br), in acetone solution to give complexes of the type [PtX(PEt3)L] [PtX3(PEt3)], (L = APy or 1-MAPy), which contain a bidentate 2-(alkenyl)pyridine, whereas the same reaction in benzene solution gives trans-[PtBr2(PEt3)L], (L = APy or 1-MAPy), which contains a monodentate 2-(alkenyl)pyridine; 1H NMR spectra indicate that both types of product undergo olefin exchange in solution. The same reaction with 2-(3-methallyl)-pyridine [2-(2-butenyl)pyridine] (3-MAPy), 2-(3,3-dimethylallyl)pyridine [2-(3-methyl-2-butenyl)pyridine] (3,3-DMAPy), and 2-(3-butenyl)pyridine (BPy), in either acetone or benzene solution, gives only trans-[PtBr2(PEt3)L]. The reaction of trans-[PtBr2(PEt3)L] (L = APy or 3-MAPy) with AgClO4 gives [PtBr(PEt3)L]ClO4. Complexes of the type [PtCl2L], which contain bidentate 2-(alkenyl)pyridines, result on reaction of L = APy, 3-MAPy, 3,3-DMAPy, BPy, MBPy with [Pt2Cl4(C2H4)2].  相似文献   

14.

The complexes [N2(L2)2(H2O)4]Cl4(1) and [Ni(L2)](ClO4)2 [sdot]2H2O (2) (L = 1,3,10,12,16,19-hexaazatetracyclo [17,3,1,1 12.16,04.9]tetracosane) have been synthesized and structurally characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. The crystal structure of 1 has a distorted octahedral geometry with two secondary and two tertiary amines of the macrocycle and two water molecules. In 2, the coordination geometry around the nickel atom is square-planar with four nitrogen atoms of the macrocycle. The equilibrium [Ni(L2)]2+ + 2H2O &rlhar2; [Ni(L2)(H2O)2]2+ has been studied in aqueous solution over a temperature range, yielding Δ H° = -19.0 ± 0.2 kJ mol-1 and Δ S° = - 56.0 ± 0.4 JK-1 mol-1. Cyclic voltammetry of the complexes give two one-electron waves corresponding to Ni(II)/Ni(III) and Ni(II)/Ni(I) processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the geometry.  相似文献   

15.
Trans-methyl-azido-bis(triisopropylphosphine)platinum(II), [PtN3(CH3)(PiPr3)2] [PtN3(CH3)(PiPr3)2] has been prepared by reductive elimination of ethane from [Pt(CH3)3N3]4 in the presence of triisopropylphosphine at 80 °C. The complex is characterized by IR and NMR spectroscopy and by crystal structure determination, as well as by ab initio calculations. [PtN3(CH3)(PiPr3)2], which is in trans-configuration here, crystallizes in the monoclinic space group P21, Z = 2, and with the lattice dimensions a = 806.9(1), b = 1384.3(1), c = 1093.8(1) pm, β = 94.107(10)°.  相似文献   

16.
四氯合铂酸钾分别与邻、间、对磺基苯甲酸在乙腈和水中利用水热合成获得了3个铂的N-(1-亚氨基乙基)乙脒配合物:[Pt(NIA)2]·(2-sb)·2H2O(1),[Pt(NIA)2]·(3-sb)·3H2O(2)和[Pt(NIA)2]·(1,4-dsb)·2H2O(3)(NIA=N-(1-亚氨基乙基)乙脒,2-sb2-=2-磺基苯甲酸二价阴离子、3-sb2-=3-磺基苯甲酸二价阴离子、1,4-dsb2-=1,4-二磺基苯二价阴离子)。合成过程中发生了乙氰三聚以及4-sb2-转变为1,4-dsb2-的反应。对配合物进行了元素分析、红外、紫外、荧光、热重和粉末X射线衍射表征,并利用单晶X射线衍射测定了配合物的晶体结构。3个配合物为阳离子-阴离子物种,阳离子为[Pt(NIA)2]2+,中心金属离子四配位平面构型;阴离子与阳离子、水形成氢键,组成一个三维网络结构,但3个配合物的氢键模式不同。配合物在热稳定性、荧光性质上有一定差异。  相似文献   

17.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

18.
Mixed-ligand platinum complexescis-PtII(R6NH2)(NH3)X2 andcis-PtII(R5NH2)(NH3)X2 (R6 is 2,2,6,6-tetramethyl-4-piperidyl-1-oxyl and R5 is 2,2,5,5-tetramethyl-3-pyrrolidinyl-1-oxyl) were synthesized by either the reaction of aminonitroxides RNH2 with Na[PtII(NH3)Cl2I] generatedin situ (for X2=ClI) or by replacement of the iodo-chloro ligands incis-Pt11(RNH2)(NH3)ClI by dichloro and oxalato ligands. The complexes obtained were characterized by elemental analysis and by IR, UV, and ESR spectra. Forcis-Pt11(R5NH2)(NH3)Cl2, crystal and molecular structures were determined by X-ray diffraction analysis. Cisplatin accelerates autooxidation of methyl linoleate and the platinum nitroxide complexes synthesized exhibit antioxidant properties. The rate of isolated DNA binding with the new complexes is almost as high as that for cisplatin.cis-Pt11(R6NH2)(NH3)Cl2 exhibits the highest antitumor activity. The high antitumor activity of platinum nitroxide complexes shows that the possible “radical component” is not a crucial factor in the cytotoxic action of cisplatin. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1624–1630, September, 2000.  相似文献   

19.
In modern cancer therapy the clinical application of platinum‐based drugs is more and more limited by the occurrence of intrinsic or acquired resistances. In this context the potential use of dinuclear platinum complexes in chemotherapy is increasingly relevant. The novel complexes Pd(Bzdpa)Cl2, Pd2(C4H8(dpa)2)Cl4, and Pt2(C4H8(dpa)2)Cl4 allow a direct comparison of mono‐ and dinuclear palladium and platinum complexes respectively deriving from a 2,2′‐dipyridylamine (Hdpa) ligand system. They were characterized by single crystal X‐ray analysis as well as infrared spectroscopy and elemental analysis. The cisplatin analogous mononuclear palladium complex Pd(Bzdpa)Cl2 ( 1 ) (Bzdpa: (2,2′‐dipyridylbenzyl)amine) belongs to a range of 2,2′‐dipyridylamine‐based compounds which were extensively studied in our laboratories. 1 crystallizes in the orthorhombic space group Pna21 with a = 13.722(3), b = 13.457(3), c = 9.483(2), V = 1751.1(6) Å3, and Z = 4. The metal binding motif of 1 was expanded by a flexible butyl‐linker to form the tetradentate C4H8(dpa)2 ligand. The resulting isotypic dinuclear complexes Pd2(C4H8(dpa)2)Cl4·2CH3CN ( 2 ) and Pt2(C4H8(dpa)2)Cl4·2CH3CN ( 3 ) crystallize in the triclinic space group with a = 7.8427(2), b = 8.7940(2), c = 11.7645 (3), α = 79.219(2)°, β = 84.033(2)°, γ = 87.744(2)°, V = 792.58(3) Å3 ( 2 ) and a = 7.831(5), b = 8.814(5), c = 11.817(5), α = 79.271(5)°, β = 83.571(5)°, γ = 88.063(5)°, V = 796.3(8) Å3 ( 3 ), both with one centrosymmetrical molecule in the unit cell.  相似文献   

20.
Red single crystals of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 (triclinic, , Z = 1, a = 844.02(9), b = 908.50(9), c = 939.49(8) pm, α = 107.73(1)°, β = 112.10(1)°, γ = 103.53(1)°) were obtained by the reaction of [Gd(NO3)(H2O)7][PtCl6]·4H2O with sulfuric acid at 320 °C in a sealed glass ampoule. In the crystal structure, Pt2 dumbbells are coordinated by four chelating sulfate groups and two monodentate hydrogensulfate ions. Two further HSO4? ions are not bonded to the Pt2 dumbbell. The Gd3+ ions are eightfold coordinated by oxygen atoms. The IR data of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 are typical for these type of compounds. The thermal decomposition of the compound leads to elemental platinum and Gd2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号