首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

2.
Three diiron 1,2-dithiolate complexes with a trans-cinnamate ester have been characterized. Esterification of [Fe2(CO)6{μ-SCH2CH(CH2OH)S}] (1) with trans-cinnamic acid in the presence of N,N′-dicyclohexylcarbodiimide and 4-dimethylaminopyridine afforded [Fe2(CO)6[μ-SCH2CH(CH2O2CCH?=?CHPh)S}] (2) in 94% yield. Carbonyl substitution of 2 with a monophosphine ligand tris(4-fluorophenyl)phosphine or tris(2-methoxyphenyl)phosphine in the presence of Me3NO·2H2O resulted in formation of the corresponding monophosphine-substituted complexes [Fe2(CO)5 {P(C6H4F-4)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (3) and [Fe2(CO)5{P (C6H4OCH3-2)3}{µ-SCH2CH(CH2O2CCH?=?CHPh)S}] (4) in 79% and 84% yields, respectively. Complexes 2-4 were structurally characterized by elemental analysis, spectroscopy and X-ray crystallography. Moreover, electrochemical properties of 2-4 were investigated.  相似文献   

3.
A series of N-functionalized diiron azadithiolate complexes, [(µ-SCH2)2NCH2CO2Me]Fe2(CO)5?L [L?=?CO (1); PPh3 (2); Ph2PCH2PPh2 (3)], as active site models of [FeFe]-hydrogenases has been prepared and characterized. While 1 was prepared by a sequential reaction of (µ-HS)2Fe2(CO)6 with two equiv. of aqueous HCHO, followed by treatment of (µ-HOCH2S)2Fe2(CO)6 with one equiv. of H2NCH2CO2Me in 46% yield; 2 and 3 were prepared by a carbonyl substitution reaction of 1 with PPh3 or Ph2PCH2PPh2 in the presence of Me3NO?·?2H2O in 90% and 85% yields, respectively. The crystal structures of 1 and 2 revealed that the substituent attached to the bridgehead nitrogen occupies an equatorial position and the PPh3 ligand resides in an axial position of the square pyramid of Fe2.  相似文献   

4.
The mechanism for inhibition of [FeFe]-hydrogenases by formaldehyde is examined with model complexes. Key findings: (i) CH2 donated by formaldehyde covalently link Fe and the amine cofactor, blocking the active site and (ii) the resulting Fe-alkyl is a versatile electrophilic alkylating agent. Solutions of Fe2[(μ-SCH2)2NH](CO)4(PMe3)2 (1) react with a mixture of HBF4 and CH2O to give three isomers of [Fe2[(μ-SCH2)2NCH2](CO)4(PMe3)2]+ ([2]+). X-ray crystallography verified the NCH2Fe linkage to an octahedral Fe(ii) site. Although [2]+ is stereochemically rigid on the NMR timescale, spin-saturation transfer experiments implicate reversible dissociation of the Fe–CH2 bond, allowing interchange of all three diastereoisomers. Using 13CH2O, the methylenation begins with formation of [Fe2[(μ-SCH2)2N13CH2OH](CO)4(PMe3)2]+. Protonation converts this hydroxymethyl derivative to [2]+, concomitant with 13C-labelling of all three methylene groups. The Fe–CH2N bond in [2]+ is electrophilic: PPh3, hydroxide, and hydride give, respectively, the phosphonium [Fe2[(μ-SCH2)2NCH2PPh3](CO)4(PMe3)2]+, 1, and the methylamine Fe2[(μ-SCH2)2NCH3](CO)4(PMe3)2. The reaction of [Fe2[(μ-SCH2)2NH](CN)2(CO)4]2− with CH2O/HBF4 gave [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)5] ([4]), the result of reductive elimination from [Fe2[(μ-SCH2)2NCH2](CN)2(CO)4]. The phosphine derivative [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)4(PPh3)] ([5]) was characterized crystallographically.

The mechanism for inhibition of [FeFe]-hydrogenases by formaldehyde is examined with model complexes.  相似文献   

5.
Abstract

In this contribution, two diiron ethane-1,2-dithiolate complexes with one ethyldiphenylphosphine or dicyclohexylphenylphosphine ligand have been synthesized and characterized as mimics for the active site of [FeFe]-hydrogenases. Treatment of complex [Fe2(CO)6(μ-SCH2CH2S)] (1) with ethyldiphenylphosphine or dicyclohexylphenylphosphine and Me3NO · 2?H2O as decarbonylating agent gave complexes [Fe2(CO)5(Ph2PCH2CH3)(μ-SCH2CH2S)] (2) and [Fe2(CO)5{PhP(C6H11)2}(μ-SCH2CH2S)] (3) in 93% and 86% yields, respectively. Complexes 2 and 3 were characterized by elemental analysis, IR, and NMR spectroscopy. X-ray crystallographic studies confirmed the molecular structures of complexes 2 and 3, indicating that they contain a butterfly diiron ethane-1,2-dithiolate cluster with five terminal carbonyl ligands and an apically-coordinated phosphine ligand. Additionally, the electrochemical properties of these complexes were investigated by cyclic voltammetry, suggesting that they can be regarded as electrocatalysts for the reduction of protons to H2 in the presence of HOAc. A possible mechanism for the proton reduction was proposed.  相似文献   

6.
Abstract

Treatment of the starting complex [Fe2(CO)6{μ-SCH2CH(CH2OH)S}] (1) with 2-(diphenylphosphino)benzoic acid in the presence of N,N’-dicyclohexylcarbodiimide and 4-dimethylaminopyridine gave the corresponding ester derivative [Fe2(CO)6{μ-SCH2CH(CH2O2CC6H4PPh2-2)S}] (2) in 92% yield. Further treatment of complex 2 with one equivalent of Me3NO · 2?H2O as the decarbonylating agent yielded diphenylphosphino-substituted complex [Fe2(CO)5{μ-SCH2CH(CH2O2CC6H4PPh2-2)S}] (3) in 79% yield. Both complexes were characterized by elemental analysis, spectroscopy, as well as by X-ray crystallography. Additionally, the electrochemical properties of these complexes were studied by cyclic voltammetry.  相似文献   

7.
Abstract

The reactions of the starting complex, [Fe2(CO)6{μ-SCH2CH (CH2CH3)S}] (1), with the phosphine ligands tris(4-methylphenyl)phosphine, diphenyl-2-pyridylphosphine, tris(4-fluorophenyl)phosphine, 2-(diphenylphosphino)benzaldehyde, or benzyldiphenylphosphine in the presence of the decarbonylating agent Me3NO·2H2O yielded the corresponding phosphine-substituted diiron butane-1,2-dithiolate complexes [Fe2(CO)5(L){μ-SCH2CH(CH2CH3)S}] (L?=?P(4-C6H4CH3)3, 2; Ph2P(2-C5H4N), 3; P(4-C6H4F)3, 4; Ph2P(2-C6H4CHO), 5; Ph2PCH2Ph, 6) in 75%–87% yields. The complexes have been characterized by elemental analysis, IR, 1H, and 31P{1H} NMR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Moreover, the electrochemistry of 24 was studied by cyclic voltammetry, suggesting that they can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

8.
Reaction of 1,1′-bis(diphenylphosphino)ferrocene (dppf) with [μ-(SCH2)2NCH2CH2OH]Fe2(CO)6 (A) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)6 (C) in refluxing xylene yielded an intramolecular bridging complex [μ-(SCH2)2NCH2CH2OH]Fe2(CO)4(μ-dppf) (1) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)4(μ-dppf) (2) in moderate yield. The structures of both complexes were fully characterized by spectroscopic methods and X-ray crystallography, and the electronic structure of 2 was further investigated by UV–vis. The cyclic voltammetry was conducted and the reduction of protons from CF3SO3H (TfOH), HBF4·Et2O, or CF3COOH (TFA) catalyzed by 2 was observed.  相似文献   

9.
As the active site model of [FeFe]-hydrogenases, complexes [(μ-PDT)Fe2(CO)5]2(dppb) (PDT = SCH2CH2CH2S, dppb = Ph2PCH2CH2CH2CH2PPh2) (1) and [(μ-SCH2)2NCH2CO2Me]Fe2(CO)5(dppm) (dppm = Ph2PCH2PPh2) (2) were prepared by reactions of (μ-PDT)Fe2(CO)6 (A) or [(μ-SCH2)2NCH2CO2Me]Fe2(CO)6 (B) with dppb or dppm in the presence of the decarbonylating agent Me3NO?2H2O in MeCN at room temperature. Complex 1 was characterized by elemental analysis, IR, and 1H (31P, 13C) NMR spectroscopic techniques. In addition, the molecular structures of 1 and 2 have been confirmed by single crystal X-ray diffraction analysis. In the crystal structure of 1, two phosphorus atoms of dppb reside in a basal position of the square-pyramidal coordination sphere of the Fe2 and Fe3 atoms. However, in the crystal structure of 2, P1 atom of dppm resides in an apical position of the square-pyramidal coordination sphere of the Fe2 atom.  相似文献   

10.
Four new butterfly Fe/S cluster complexes bearing 2,6-(CH2)2C5H3N or (CH2)2 groups, as the active site models of [FeFe]-hydrogenase, have been prepared by condensation reaction and structurally characterized. Treatments of the parent complex Fe2(CO)6[(μ-SCH2)2CHCO2H] (A) with 2,6-(HOCH2)2C5H3N or HOCH2CH2OH in the presence of 4-dimethylaminopyridine and dicyclohexylcarbodiimide afforded the single-butterfly Fe/S complexes Fe2(CO)6[(μ-SCH2)2CHC(O)OCH2(2,6-C5H3N)CH2OH] (1) and Fe2(CO)6[(μ-SCH2)2CHC(O)OCH2CH2OH] (3) and the double-butterfly Fe/S complexes [Fe2(CO)6(μ-SCH2)2CHC(O)OCH2]2(2,6-C5H3N) (2) and [Fe2(CO)6(μ-SCH2)2CHC(O)OCH2]2 (4). The new complexes 14 were fully characterized by elemental analysis, ESI-MS, IR, and 1H (13C) NMR spectroscopy.  相似文献   

11.
Four diiron toluenedithiolate complexes 25 with monophosphine ligands are reported. Treatment of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with tris(3-chlorophenyl)phosphine, tris(4-chlorophenyl)phosphine, tris(4-methylphenyl)phosphine or 2-(diphenylphosphino)benzaldehyde, and Me3NO?2H2O in MeCN resulted in the formation of [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(3-C6H4Cl)3] (2), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4CH3)3] (4), and [μ-SC6H3(CH3)S-μ]Fe2(CO)5[Ph2P(2-C6H4CHO)] (5) in 64–82% yields. Complexes 25 have been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR and further confirmed by single crystal X-ray diffraction analysis. The molecular structures show that 25 contain a butterfly diiron toluenedithiolate cluster coordinated by five terminal carbonyls and an apical monophosphine.  相似文献   

12.
Abstract

In this article, five diiron 1,2-dithiolate complexes containing phosphine ligands are reported. Treatment of complex [Fe2(CO)6(μ-SCH2CH2S)] (1) with the phosphine ligands tris(4-methylphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris(3-chlorophenyl)phosphine, tris(3-methylphenyl)phosphine, or 2-(diphenylphosphino)biphenyl in the presence of Me3NO·2H2O as the decarbonylating agent afforded the target products [Fe2(CO)5(L)(μ-SCH2CH2S)] [L?=?P(4-C6H4CH3)3, 2; P(4-C6H4OCH3)3, 3; P(3-C6H4Cl)3, 4; P(3-C6H4CH3)3, 5; Ph2P(2-C6H4Ph), 6] in 80–93% yields. Complexes 26 have been characterized by elemental analysis, spectroscopy, and X-ray crystallography. Additionally, the electrochemical properties were studied by cyclic voltammetry.  相似文献   

13.
The γ-hydroxypropyl-functionalised diiron dithiolate complex [Fe2(CO)6(μ-SCH2CH2CH2OH)2] is prepared upon thermolysis of Fe3(CO)12 and HO(CH2)3SH and further reaction with dppm (dppm = Ph2PCH2PPh2) affords [Fe2(CO)4(μ-dppm)(μ-SCH2CH2CH2OH)2]. From the reaction of Fe3(CO)12 with dppm(S2) a minor product is the tetrairon cluster, [{Fe2(CO)6(μ-SCH2CH2CH2OH)}24-S)], the mode of formation of which is unclear. It has been crystallographically characterised and adopts a μ4-S bridged double butterfly structure which is compared with other crystallographically characterised complexes of this type. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
This article describes recent developments in chemical study on a series of butterfly-shaped μ-CO-containing Fe/E (E = S, Se, Te) cluster salts. These salts include eleven novel cluster anions, which are the single butterfly one μ-CO-containing [(μ-RE)(μ-CO)Fe2(CO)6]- (A), the double butterfly two μ-CO-containing {[(μ-CO)Fe2(CO)6]2(μ-EZE-μ)}2- (B, E = S; C, E = Se), the triple butterfly three μ-CO- containing {[(μ-CO)Fe2(CO)6]3[(μ-SCH2CH2)3N]}3- (D), {[(μ-CO)Fe2(CO)6]3[1,3,5-(μ-SCH2)3C6H3]}3- (E), {[(μ- CO)...  相似文献   

15.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

16.
Reaction of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with 1.5 equivalents of 1,1-bis(diphenylphosphino)methane (dppm) in toluene at reflux gave monosubstituted [μ-SC6H3(CH3)S-μ]Fe2(CO)5(dppm) (2) and disubstituted [μ-SC6H3(CH3)S-μ]Fe2(CO)4(dppm)2 (3) in 27 and 37% yields, respectively. Complexes 2 and 3 were characterized by elemental analysis, IR, NMR spectroscopy, and single crystal X-ray diffraction analysis.  相似文献   

17.
Reaction of complex [(μ-SCH2)2NCH2CO2Me]Fe2(CO)6 (A) with 1,1-bis(diphenylphosphino)ferrocene (dppf) in the presence of the decarbonylating agent Me3NO?2H2O gave complex [(μ-SCH2)2NCH2CO2MeFe2(CO)5]2[(η 5-Ph2PC5H4)2Fe] (1) in 72 % yields, whereas complex [(μ-SCH2)2NPhFe2(CO)5]2[(η 5-Ph2PC5H4)2Fe] (2) was produced by reaction of [(μ-SCH2)2NPh]Fe2(CO)6 (B) with dppf in toluene at reflux in 41 % yield. The new complexes 1 and 2 were characterized by elemental analysis, IR, and 1H (31P, 13C) NMR spectroscopy as well as by single crystal X-ray diffraction analysis. In the crystal structures of 1 and 2, the dppf ligand resides in an apical position of the square-pyramidal geometry of the neighbouring Fe atoms and the crystal structures were stabilized by the intermolecular C–H···O hydrogen bonds.  相似文献   

18.
Three diiron and tetrairon azadithiolate complexes as models for the active site of [FeFe] hydrogenase were prepared. Reaction of complex Fe2(SCH2OH)2(CO)6 and NH2CH2CH2CH2OCH3 resulted in the diiron azadithiolate hexcarbonyl complex Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)6 ( 1 ) in moderate yield. Furthermore, treatment of complex 1 with mono phosphine ligand PPh3 and diphosphine ligand Ph2PCH2CH2PPh2 in the presence of decarbonylation reagent Me3NO · 2H2O yielded the phosphine‐substituted azadithiolate complexes Fe2[(SCH2)2NCH2CH2CH2OCH3]CO)5(PPh3) ( 2 ) and {Fe2[(SCH2)2NCH2CH2CH2OCH3](CO)5}2(Ph2PCH2CH2PPh2) ( 3 ) respectively. The new complexes 1 – 3 were fully characterized by elemental analysis, IR, 1H, 13C, 31P NMR spectroscopy and X‐ray crystallography. It is worthy to note that the crystallographic studies show the unusual difference of the methoxypropanyl substituent on the N atom of complexes 1 and 2 , largely because of the affection of phosphine ligand PPh3. In addition, complex 1 was found to be a catalyst for H2 production under electrochemical condition.  相似文献   

19.
The reaction of complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 (1) with trans-1,2-bis(diphenylphosphino)ethylene (trans-dppv) in the presence of Me3NO?2H2O in CH2Cl2/CH3CN afforded complex {[μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5}2(trans-dppv) (2) with a bridging dppv. Complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)4(cis-dppv) (3) was prepared by the reaction of 1 with cis-dppv and Me3NO?2H2O. The new complexes 2 and 3 were characterized by elemental analysis, spectroscopy, and X-ray diffraction analysis.  相似文献   

20.
Alkylation of [Pt2(µ-S)2(PPh3)4] with 2,4-dinitrophenylhydrazone-functionalized alkylating agents XC6H4C{=NNHC6H3(NO2)2}CH2Br (X?=?H, Ph) gives monoalkylated cations [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}C6H4X}(PPh3)4]+. An X-ray diffraction study on [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}Ph}(PPh3)4]BPh4 shows the crystal to be the Z isomer, with the phenyl ring and NHC6H3(NO2)2 groups mutually trans. 1H- and 31P{1H} NMR spectroscopic methods indicate a mixture of Z (major) and E (minor) isomers in solution, which slowly convert mainly to the E isomer. Reaction of [Pt2(µ-S)2(PPh3)4] with the dinitrophenylhydrazone of chloroacetone [ClCH2C{=NNH(C6H3(NO2)2}Me] and NaBPh4 gives [Pt2(µ-S){µ-SCH2C{=NNHC6H3(NO2)2}Me}(PPh3)4]BPh4, which exists as a single (E) isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号