首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Some organolead(IV) complexes derived from biologically active sulfur and nitrogen donor ligands have been synthesized and characterized by elemental analyses, molecular weight determinations and conductivity measurements. The trigonal bipyramidal and octahedral geometries for these complexes have been proposed on the basis of electronic, infrared and NMR (1H and 13C) spectral evidences. The antifungal activity of some of the ligands and their complexes have also been evaluated against Fursarium oxysporum SCW. ex Frics f. sp. Ciceri (Pedwick) subram.  相似文献   

2.
Interactions and binding sites of the solvent molecules chloroform and ethanol to bis(acetylacetonate)oxovanadium(IV) (VO(acac)2) complexes in (frozen) solutions have been investigated by pulsed electron nuclear double resonance, sum peak electron spin echo envelope modulation and hyperfine sublevel correlation spectroscopy. The experimental proton hyperfine coupling data of coordinating solvent molecules have been interpreted using quantum chemical calculations (density functional theory). Experimental and computed hyperfine couplings indicate that ethanol coordinates to vanadium in the equatorial plane of VO(acac)2 and chloroform interacts via hydrogen bonding to oxygens of the acac ligands.  相似文献   

3.
A new Schiff base, H2L, was prepared by condensation of 4,6-diacetylresorcinol with o-phenylenediamine in molar ratio 1?:?1. The ligand reacted with copper(II), nickel(II), cobalt(II), iron(III), zinc(II), oxovanadium(IV), and dioxouranium(VI) ions in the absence and presence of LiOH to yield mononuclear and homobinuclear complexes. The mononuclear dioxouranium(VI) complex [(HL)-(UO2)(OAc)(H2O)]·5H2O was used to synthesize heterobinuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H-, and 13C-NMR, electronic, ESR and mass spectra, conductivity, and magnetic susceptibility measurements as well as thermal analysis. In the absence of LiOH, mononuclear complexes (1, 4, and 9) were obtained; in the presence of LiOH, binuclear complexes (3, 5, 7, and 10) as well as mononuclear complexes (2, 6, and 8) were obtained. In the mononuclear complexes, the coordinating sites are the phenolic oxygen, azomethine nitrogen, and amino nitrogen. In addition to these coordinating sites, the free carbonyl and phenolic OH are involved in coordination in binuclear complexes. The metal complexes exhibited octahedral, tetrahedral, and square planar geometries while the uranium is seven-coordinate. The antimicrobial and antioxidant activities of the ligand and its complexes were investigated. The ligand and the metal complexes showed antitumor activity against Ehrlich Acites Carcinoma.  相似文献   

4.
Mercury(II) halide complexes [HgX2(P(2-py)3)2] (X?=?Br (1), Cl (2)) and [HgX2(PPh(2-py)2)2] (X?=?Br (3), Cl (4)) containing P(2-py)3 and PPh(2-py)2 ligands (P(2-py)3 is tris(2-pyridyl)phosphine and PPh(2-py)2 is bis(2-pyridyl)phenylphosphine) were synthesized in nearly quantitative yield by reaction of corresponding mercury(II) halide and appropriate ligands. The synthesized complexes are fully characterized by elemental analysis, melting point determination, IR, 1H, and 31P-NMR spectroscopies. Furthermore, the crystal structure of [HgBr2(PPh(2-py)2)2] determined by X-ray diffraction is also reported.  相似文献   

5.
Abstract

This review covers 30?Pt(II) complexes in which the inner coordination of PtP2S2 is created by organodiphosphines and a pair of S-donor ligands. The organodiphosphines generate four-(PCP), five-(PC2P), six-(PC3P) and seven-(PC4P) membered metallocyclic rings. These complexes crystallize in three crystal systems: orthorhombic (four examples), triclinic (nine examples) and monoclinic (seventeen examples). The respective metallocyclic rings open in the sequence: (mean values): 73.2° (PCP) < 86.0° (PC2P) < 94.5° (PC3P) < 97.5° (PC4P). The mean values of Pt-P and Pt-S bond distances are 2.247 and 2.350?Å, respectively. The structure parameters are analyzed and discussed with attention to any trans-influence.  相似文献   

6.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

7.
Abstract

In this review, the structural data of monomeric platinum(II) complexes with inner coordination spheres of Pt(η2-P2L)(SiL)2, Pt(η2-P2L)(η2-Si2L) and Pt(η2-P,SiL)2 are classified and analyzed. These complexes crystallize in three crystal systems: monoclinic (8 examples), triclinic (4 examples) and orthorhombic (4 examples). Distorted square-planar environments about the Pt(II) atoms are built up by combination of homobi-P,P with two monodentate Si donor ligands; homobi-PP with homo-Si,Si donor ligands, or heterobi-P,Si donor ligands. The chelating ligands create metallacycles with the following angles: 65.0° (SiOSi) < 83.1° (SiC2Si) < 85.2° (PC2P) < 88.8° (SiSi2Si)). The mean Pt-P and Pt-Si bond distances in Pt(η2-P2L)·(SiL)2 complexes are 2.319 and 2.365?Å; in Pt(η2-P2L)(η2-Si2L) the values are 2.316 and 2.360?Å. The complex [Pt{η2-Me2P(C2B10H10)SiMe2}2] exists in two isomeric forms, a monoclinic cis- and a triclinic trans-isomer. The structural data are compared and discussed with the complexes of inner coordination spheres: Pt(η2-P2L)(XL)2 (X?=?O, N, CN, BL, Cl, SL, SeL, Br, or I) and Pt(η2-P2L)(η2-X2L) (X?=?OL, NL, SL or SeL).  相似文献   

8.

We have designed and synthesized a new ruthenium complex, [(5‐amino‐1,10‐phenanthroline)bis(4,4′‐dicarboxylic acid‐2,2′‐bipyridine)]ruthenium(II) by introducing two types of ligands, 5‐amino‐1,10‐phenanthroline and 4,4′‐dicarboxylic acid‐2,2′‐bipyridine. We investigated the electronic, spectroscopic, electrochemical, and photovoltaic properties of the Ru(II) complex. The short‐circuit current density and overall solar‐to‐electric energy conversion efficiency of photovoltaic cells made with this Ru(II) complex were found to be 8.9 mA/cm2 and 2.1%, respectively. A series of analogous Ru(II) complexes have also been synthesized and investigated to compare the effects of functional groups on various ligands. HOMO‐LUMO energies and molecular orbital surfaces have been investigated using semiempirical quantum chemical methods.  相似文献   

9.
Six new mixed-ligand tungsten carbonyl complexes containing N-methyl substituted urea and thiourea of the type W(CO)4[RCH2N-(C=X)NH2] where X?=?O or S and R?=?morpholine, piperidine and diphenylamine are reported. These have been prepared by refluxing hexacarbonyl tungsten(0) with corresponding ligands in THF to produce cis-disubstituted products, [(L-L)W(CO)4] where L-L?=?a chelating bidentate ligand, morpholinomethyl urea (MMU), morpholinomethyl thiourea (MMTU), piperidinomethyl urea (PMU), piperidinomethyl thiourea (PMTU), diphenylaminomethyl urea (DAMU) and diphenylaminomethyl thiourea (DAMTU). The compounds have been characterized by elemental analysis, IR, electronic and 13C NMR spectra, magnetic moments and conductivity measurements. The IR spectra suggests that in all the complexes, the ligands are bidentate chelating, coordinating the metal through carbonyl oxygen or thiocarbonyl sulphur and the ring nitrogen or tert-nitrogen of diphenylamine. The CO force constants and CO–CO interaction constants for these derivatives have also been calculated using Cotton–Kraihanzel secular equations, which indicate poor π-bonding ability of the ligands. 13C NMR and electronic spectra reveal loss of cis-carbonyl ligands to produce cis-disubstituted tetracarbonyl derivatives. Molecular modeling studies have been carried out using Hyperchem release 7.52 which suggest a distorted octahedral geometry for these complexes.  相似文献   

10.
Solid chelates derived from some alkaline earth and transition metal complexes with ampicillin (Hamp, a) and amoxicillin (Hamox, b) were synthesized and characterized using elemental analysis, molar conductivity, IR, magnetic susceptibility, and thermogravimetric studies. Both drugs behave as tetradentate ligands coordinating to metal through amino, imino, and carboxylate as well as through β-lactamic carbonyl. All chelates have octahedral geometry except Cu(II) complexes which have square planar structure and uranium has pentagonal bipyramidal coordination. 1H- and 13C-NMR of the Zn(II) and UO2(VI) chelates are compared with the free ligands. The antimicrobial activity of the prepared chelates was determined.  相似文献   

11.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

12.
Reaction between the tridentate NNN donor ligand, (E)-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)benzo[d]thiazole (HL), and V2O5 in ethanol gave a new vanadium(V) complex, [VO2L] (1), while the similar reaction by using [VIVO(acac)2] as the metal source gave two different types of crystals related to compounds [VO2L] (1) and [VIVO(acac)L] (2). The molecular structures of the complexes were determined by single-crystal X-ray diffraction and spectroscopic characterization was carried out by means of FT-IR, UV–vis and NMR experiments as well as elemental analysis. The oxidovanadium(IV) and dioxidovanadium(V) species were used as catalyst precursors for olefin oxidation in the presence of hydrogen peroxide (H2O2) as an oxidant. Under similar experimental conditions, the presence of 1 resulted in higher oxidation conversion than 2.  相似文献   

13.
Unsymmetrical and symmetrical mononuclear and insoluble polynuclear oxo-vanadium(IV) Schiff-base complexes were prepared and characterized. The complexes [VO(5-x-6-y-Sal)(5-x′-6-y′-Sal)en)] (where x, x′ = H, Br and y, y′ = H, OMe) were obtained in monomeric form while for x or x′ = NO2 polymers were produced. In the case of [VO(5-x-6-y-Sal)(5-x′-6-y′-Sal)pn)] with a six-member N–N chelating ring, oxo-vanadium(IV) complexes were polynuclear. The tetradentate N2O2-Schiff-base ligands are coordinated in the equatorial plane of oxo-vanadium(IV). Electrochemical and spectroscopic data (UV–Vis and IR) suggest importance of coordination geometry and the substiuents on phenyl rings and the bridge group. Electron density of the vanadium center decreases by the electron-withdrawing groups on the ligand while electron density on vanadium increases via σ-donation of phenolic oxygen.  相似文献   

14.
基于卡里普索结构预测程序和密度泛函理论的第一性原理计算,搜索确定了VB2n-n=8~12)团簇的基态和亚稳态结构。结果发现,V原子的掺杂完全改变了原硼团簇的结构并提高了原体系的稳定性。掺杂体系基态结构分别呈现高对称性的鼓状(VB16-C2v)、管状(VB18-C2v和VB20-Cs)及笼状(VB22-C2和VB24-D3h)结构。基于基态结构,研究了体系的电荷转移和极化率,拟合出了光电子能谱、红外和拉曼谱图,分析了流变键和芳香特性。最后,研究了体系的热力学特性,讨论了温度对热力学参数的影响。  相似文献   

15.
16.
Condensation of 1,3-diaminopropane-2-ol with diacetylmonoxime, acetylacetone, salicylaldehyde and orthohydroxyacetophenone yielded the tetradentate Schiff bases N,N′-(2-hydroxy)propylenebis{(2-imino-3-oximino)butane} (H2dampnol), N,N′-(2-hydroxy)propylenebis(acetylacetoneimine) (H2acacpnol), N,N′-(2-hydroxy)propylenebis-(salicyalaldimine) (H2salpnol) and N,N′-(2-hydroxy)propylenebis(7-methylsalicylaldimine) (H2ohacpnol), respectively. The ligands form complexes with oxovanadium(IV), vanadium(IV) and oxovanadium(V) salts. Some mixed ligand complexes involving σ-bonded phenyl and benzyl radical along with tetradentate ligand, H2L (where, H2L stands for H2dampnol, H2acacpnol, H2salpnol or H2ohacpnol) of the types [(L)V(C6H5)2]CH3OH and [(L)V(CH2Ph)2]CH3OH have been synthesized, characterized and also provide the syntheses of some new organovanadium(IV) complexes. Silylation coupled with desilylation have been employed as a route to new organovanadium(IV) complexes. All the complexes have been characterized with the help of elemental analyses, molar conductance values, molecular weights, magnetic moments and spectroscopic (IR, UV-Vis, ESR) data.  相似文献   

17.
Four new azocalix[4]arenes {5,11,17,23-tetrakis[(2-hydroxy-5-tert-butylphenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (1), 5,11,17,23-tetrakis[(2-hydroxy-5-nitro phenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (2), 5,11,17,23-tetrakis[(2-amino-5-carboxylphenylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (3) and 5,11,17,23-tetrakis[(1-amino-2-hydroxy-4-sulfonicacidnapthylazo)]-25,26,27,28-tetrahydroxycalix[4]arene (4)} have been synthesized from p-tert-butylphenol, p-nitrophenol, p-aminobenzoic acid and 1-amino-2-hydroxy-4-sulphonic acid by diazo coupling reaction with p-aminocalix[4]arene. The resulting ligands (14) were treated with three transition metal salts (e.g., CuCl2·2H2O, NiCl2·6H2O or CoCl2·6H2O). Cu(II), Ni(II) and Co(II) complexes of the azocalix[4]arene derivatives were obtained and characterized by UV-vis, IR, 1H-NMR spectroscopic techniques and elemental analysis. All the complexes have a metal:ligand ratio of 2:1. The Cu(II) and Ni(II) complexes of azocalix[4]arenes are square-planar, while the Co(II) complexes of azocalix[4]arenes are octahedral with water molecules as axial ligands. The solvent extraction of various transition metal cations from the aqueous phase to the organic phase was carried out by using azocalix[4]arenes (14). It was found that, azocalix[4]arenes 1, 2 and 3 examined selectivity for transition metal cations such as Ag+, Hg+ and Hg2+. In addition, the thermal stability of metal:azocalix[4]arene complexes were also reported. Dedicated to Prof. Dr. Mustafa Yılmaz on the occasion of his 50th birthday  相似文献   

18.
Six complexes, [VO(L1-H)2]?·?5H2O (1), [VO(OH)(L2,3?H)(H2O)]?·?H2O (2,3), [VO(OH)(L4,5?H)(H2O)]?·?H2O (4,5), [VO(OH)(L6?H)(H2O)]?·?H2O (6), were prepared by reacting different derivatives of 5-phenylazo-6-aminouracil ligands with VOSO4?·?5H2O. The infrared and 1H NMR spectra of the complexes have been assigned. Thermogravimetric analyses (TG, DTG) were also carried out. The data agree quite well with the proposed structures and show that the complexes were finally decomposed to the corresponding divanadium pentoxide. The ligands and their vanadyl complexes were screened for antimicrobial activities by the agar-well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values for 14 and 6 were calculated at 30°C for 24–48?h. The activity data show that the complexes are more potent antimicrobials than the parent ligands.  相似文献   

19.
Two new complexes having general formula VOL2·nH2O [(1) L: 5-hydroxyflavone, n = 1; (2) L: chrysin, n = 4] were synthesized and characterized. Based on IR and electronic data we concluded that studied flavones act as bidentate ligands in complexes with metallic ion coordinated in a square-pyramidal stereochemistry. The thermal analysis (TG, DTA) elucidated the composition and also the number and nature of the water molecules. The thermal behavior also indicated strong interactions between oxovanadium (IV) and these oxygen donor ligands.  相似文献   

20.
Summary The oxovanadium(IV) complexes [(VOSO4·H2O)2L] and [(VO)2L1(-SO4)] (L = hydrazone ligands derived from 1,4-dihydrazinophthalazine and benzaldehyde, 4-chlorobenzaldehyde, 4-methoxybenzaldehyde or acetophenone; L 1H2 = hydrazone ligands derived from 1,4-dihydrazinophthalazine and salicylaldehyde, 2-hydroxyacetophenone or 2-hydroxynaphthaldehyde) have been prepared and characterized by elemental analyses, electrical conductance, magnetic moments and spectral data. Reduced magnetic moments are observed for all sulfato-bridged derivatives, indicating antiferromagnetically coupled vanadium(IV) centres. The vanadium(IV) centres appear to have five-coordinated stereochemistries in the systems which involve two metals bound to each ligand. The thermal behaviour of the complexes was investigated by t.g. and d.t.g. techniques. The antifungal and antiviral activities of the hydrazones and their corresponding complexes were also investigated. The screening results have been correlated with the structural features of the tested compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号