首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
[RuIII(EDTA)(H2O)]? (EDTA4? = ethylenediaminetetraacetate) catalyzes the oxidation of biological thiols, RSH (RSH = cysteine, glutathione, N-acetylcysteine, penicillamine) using H2O2 as precursor oxidant. The kinetics of the oxidation process were studied spectrophotometrically as a function of [RuIII(EDTA)(H2O)]?, [H2O2], [RSH], and pH (4–8). Spectral analyses and kinetic data are suggestive of a catalytic pathway in which the RSH reacts with [RuIII(EDTA)] catalyst complex to form [RuIII((EDTA)(SR)]2? intermediate species. In the subsequent reaction step the oxidant, H2O2, reacts directly with the coordinated S of the [RuIII((EDTA)(SR)]2? intermediate leading to formation of the disulfido (RSSR) oxidation product (identified by HPLC and ESI-MS studies) of thiols (RSH). Based on the experimental results, a working mechanism involving oxo-transfer from H2O2 to the coordinated thiols is proposed for the catalytic oxidation.  相似文献   

2.
Selective hydrogenation of bicarbonate to formate catalyzed by a ruthenium(III) complex, [RuIII(edta)] (edta4? = ethylenediaminetetraacetate), at moderate H2 pressure (2–8 atm) and temperature (30–40 °C) is reported. Formation of formate, the only reduction product, was identified by 13C NMR analysis of the resultant reaction mixture. Based on the spectral data, a working mechanism (admittedly speculative) involving the formation of ruthenium(III)-bicarbonate complex, [RuIII(edta)(HCO3)]2?, is proposed for the catalytic reaction.  相似文献   

3.
Summary The interaction of iodide ion with [RuIII(Hedtra)(H2O)] (Hedtra = N-hydroxyethylethylenediaminetriacetate) was investigated by spectrophotometry, electrochemical and stopped-flow techniques. The rate of formation of a red [RuIII(Hedtra)I] complex was found to be first order both with respect to [RuIII(Hedtra)(H2O)] and [I]. Rate and activation parameters are consistent with the proposed associative interchange mechanism. Experimental results are discussed with reference to the data available for other ligand substitutions of the [RuIII(Hedtra)(H2O)] complex.  相似文献   

4.
The reaction of [RuIII(edta)(H2O)] with o-phenylenediamine (opda) in water, under aerobic conditions, affords the diamagnetic [RuII(edta)(bqdi)]2− product (where edta stands for the ethylenediaminetetraacetate co-ligand, and bqdi represents the non-innocent o-benzoquinone α,α-diimine ligand). In the current communication, the redox chemistry of this system in aqueous solution is described in details on the basis of electrochemical and spectroelectrochemical studies. The electrochemical behavior of “free” opda is rather complicated with further chemical reactions following the irreversible two-proton/two-electron oxidation (opda→bqdi+2e+2H+), whereas its complex is electrochemically well-behaved with two chemically reversible redox processes: the monoelectronic couple associated with the metal ion (RuIII/RuII) and another bielectronic step centered on the coordinated ligand (bqdi/opda). The set of UV–Vis electronic spectra were obtained by electrolytical generation, in situ, of all the redox species accessible in the CV working conditions (i.e., the starting [RuII(edta)(bqdi)]2−, the fully oxidized [RuIII(edta)(bqdi)], and the fully reduced [RuII(edta)(opda)]2− species), which are stable and totally interconvertible. The electrochemistry and absorption spectroscopy of these complexes in water were found to be comparable with the tetraammine counterparts. A remarkable difference in redox behavior between the diimine- and the analogous dioxolene-complexes was also revealed by comparison of the system reported herein with the one derived from catechol, and rationalized in terms of the quite efficient π-accepting electronic nature of the bqdi ligand.  相似文献   

5.
The complex [RuIII(edta)(H2O)]? (edta4? = ethylenediaminetetraacetate) catalyzes the oxidation of captopril (CapSH) using primary oxidants, hydrogen peroxide (H2O2) and peroxomonosulfate (\( {\text{HSO}}_{5}^{ - } \)). The kinetics of the oxidation reaction were studied as a function of both oxidant (H2O2, \( {\text{HSO}}_{5}^{ - } \)) and substrate (CapSH) concentrations using stopped-flow and rapid scan stopped-flow techniques. Spectral and kinetic data are suggestive of a pathway involving rapid formation of the intermediate complex [RuIII(edta)(CapS)]2? followed by direct attack of the oxidant (H2O2 or \( {\text{HSO}}_{5}^{ - } \)) at the S atom of the coordinated CapS?. ESI–MS and HPLC analysis of the reaction products showed that captopril disulfide (CapSSCap) is the major oxidation product. A probable mechanism in agreement with the spectral and kinetic data is presented.  相似文献   

6.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction of [RuIII(edta)(SCN)]2? (edta4? = ethylenediaminetetraacetate; SCN? = thiocyanate ion) with the peroxomonosulfate ion (HSO5?) has been studied by using stopped‐flow and rapid scan spectrophotometry as a function of [RuIII(edta)], [HSO5?], and temperature (15–30ºC) at constant pH 6.2 (phosphate buffer). Spectral analyses and kinetic data are suggestive of a pathway in which HSO5? effects the oxidation of the coordinated SCN? by its direct attack at the S‐atom (of SCN?) coordinated to the RuIII(edta). The high negative value of entropy of activation (ΔS = ?90 ± 6 J mol?1 deg?1) is consistent with the values reported for the oxygen atom transfer process involving heterolytic cleavage of the O‐O bond in HSO5?. Formation of SO42?, SO32?, and OCN? was identified as oxidation products in ESI‐MS experiments. A detailed mechanism in agreement with the spectral and kinetic data is presented.  相似文献   

8.
The Na[SmIII(edta)(H2O)3] · 5H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and {[SmIII(Hpdta)(H2O)] · 2H2O} n (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes were prepared with heat-refluxing and acidity-adjusting methods, respectively. And their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The Na[SmIII(edta)(H2O)3] · 5H2O complex shapes a mononuclear structure, and crystallizes in the orthorhombic crystal system with space group Fdd2. The central SmIII ion is nine-coordinated by one hexadentate edta ligand and three water molecules. The crystal data are as follows: a = 19.139(10) ?, b = 35.00(2) ?, c = 11.928(10) ?, V = 7989(9) ?3, Z = 16, D c = 2.014 g/cm3, μ = 3.046 mm−1, F(000) = 4848, R = 0.0439, and wR = 0.0941 for 3434 observed reflections with I ≥ 2σ(I). The SmN2O7 part in [SmIII(edta)(H2O)3] complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The {[SmIII(Hpdta)(H2O)] · 2H2O} n complex is prepared with protonated pdta ligand firstly, which forms one dimensional unlimited ladderlike eight-coordinated structure, and crystallizes in the monoclinic crystal system with space group P21/n. The central SmIII ion, in one construction unit, is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygens from the same pdta ligand, one water molecule and one carboxylic group of neighbour pdta ligand, respectively. The crystal data are as follows: a = 12.720(3) ?, b = 9.3800(19) ?, c = 14.420(3) ?, β = 96.11(3)°, V = 1710.7(6) ?3, Z = 2, D c = 1.971 g/cm3, μ = 3.492 mm−1, F(000) = 1004, R = 0.0225 and wR = 0.0607 for 3182 observed reflections with I ≥ 2σ(I). Otherwise, each part of SmN2O6 in {[SmIII(Hpdta)(H2O)] · 2H2O} complex segment adopts a pseudo-square antiprismatic polyhedron.  相似文献   

9.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

10.
The synthesis of the reactive PN(CH) ligand 2‐di(tert‐butylphosphanomethyl)‐6‐phenylpyridine ( 1H ) and its versatile coordination to a RhI center is described. Facile C?H activation occurs in the presence of a (internal) base, thus resulting in the new cyclometalated complex [RhI(CO)(κ3P,N,C‐ 1 )] ( 3 ), which has been structurally characterized. The resulting tridentate ligand framework was experimentally and computationally shown to display dual‐site proton‐responsive reactivity, including reversible cyclometalation. This feature was probed by selective H/D exchange with [D1]formic acid. The addition of HBF4 to 3 leads to rapid net protonolysis of the Rh?C bond to produce [RhI(CO)(κ3P,N,(C?H)‐ 1 )] ( 4 ). This species features a rare aryl C?H agostic interaction in the solid state, as shown by X‐ray diffraction studies. The nature of this interaction was also studied computationally. Reaction of 3 with methyl iodide results in rapid and selective ortho‐methylation of the phenyl ring, thus generating [RhI(CO)(κ2P,N‐ 1Me )] ( 5 ). Variable‐temperature NMR spectroscopy indicates the involvement of a RhIII intermediate through formal oxidative addition to give trans‐[RhIII(CH3)(CO)(I)(κ3P,N,C‐ 1 )] prior to C?C reductive elimination. The RhIIItrans‐diiodide complex [RhI(CO)(I)23P,N,C‐ 1 )] ( 6 ) has been structurally characterized as a model compound for this elusive intermediate.  相似文献   

11.
Abstract

Reaction of one half and one equivalents of H2O2 with K[RuIII(pdta-H)Cl].2H2O gives rise to the μ-peroxo complexes [RuIII (pdta-H)]2H2O2 and [RuIV(pdta-H)]2O2, respectively. Equilibrium constants for the formation of the various peroxo species were determined between pH 3-11, in the temperature range 283-313 K and with μ = 0.10 M in KC1. The existence of the various peroxo species was substantiated by potentiometry, spectrophotometry and electrochemical studies. Thermodynamic quantities associated with the formation of the (pdta)RuIII and (pdta)RuIV-μ-peroxo species and their hydrolysis products are reported.  相似文献   

12.
The electronic structure and redox properties of the highly oxidizing, isolable RuV?O complex [RuV(N4O)(O)]2+, its oxidation reactions with saturated alkanes (cyclohexane and methane) and inorganic substrates (hydrochloric acid and water), and its intermolecular coupling reaction have been examined by DFT calculations. The oxidation reactions with cyclohexane and methane proceed through hydrogen atom transfer in a transition state with a calculated free energy barrier of 10.8 and 23.8 kcal mol?1, respectively. The overall free energy activation barrier (ΔG=25.5 kcal mol?1) of oxidation of hydrochloric acid can be decomposed into two parts: the formation of [RuIII(N4O)(HOCl)]2+G=15.0 kcal mol?1) and the substitution of HOCl by a water molecule (ΔG=10.5 kcal mol?1). For water oxidation, nucleophilic attack on RuV?O by water, leading to O? O bond formation, has a free energy barrier of 24.0 kcal mol?1, the major component of which comes from the cleavage of the H? OH bond of water. Intermolecular self‐coupling of two molecules of [RuV(N4O)(O)]2+ leads to the [(N4O)RuIV? O2? RuIII(N4O)]4+ complex with a calculated free energy barrier of 12.0 kcal mol?1.  相似文献   

13.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

14.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

15.
A one‐pot template condensation of 2‐(2‐(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H2L1, 1 ) or 2‐(2‐(dicyanomethylene)hydrazinyl)benzoic acid (H2L2, 2 ) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H2O)2O1N2 L1a] ( 3 ) and [Cu(H2O)(κO1N3 L1b)] ( 4 ), tetranuclear [Cu4(1 κO1N2:2 κO1 L2a)3‐(1 κO1, κN2:2 κO2 L2a)] ( 5 ), [Cu2(H2O)(1 κO1, κN2:2 κO1 L2c)‐(1 κO1,1 κN2:2 κO1,2 κN1‐ L2c)]2 ( 6 ) and [Cu2(H2O)2O1N2‐ L1dd)‐(1 κO1N2:2 κO1 L1dd)(μ‐H2O)]2 ? 2 H2O ( 7? 2 H2O), as well as polymer‐ ic [Cu(H2O)(κO1,1 κN2:2 κN1 L1c)]n ( 8 ) and [Cu(NH2C2H5)(κO1,1 κN2:2 κN1L2a)]n ( 9 ). The ligands 2‐SO3H‐C6H4‐(NH)N?C{(CN)[C(NH2)‐(?NCH2CH2NH2)]} (H2L1b, 10 ), 2‐CO2H‐C6H4‐(NH)N?{C(CN)[C(OCH3)‐(?NH)]} (H2L2a, 11 ) and 2‐SO3H‐C6H4‐(NH)N?C{C(?O)‐(NH2)}2 (H2L1dd, 12 ) were easily liberated upon respective treatment of 4 , 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2‐(SO3?)? C6H4? N?NC(? C?(NH+)CH2CH2NH)(?CNHCH2CH2NH) ( 13 ) was observed when 1 was treated with ethylenediamine. The hydrogen bond‐induced E/Z isomerization of the (HL1d)? ligand occurs upon conversion of [{Na(H2O)2(μ‐H2O)2}(HL1d)]n ( 14 ) to [Cu(H2O)6][HL1d]2 ? 2 H2O ( 15 ) and [{CuNa(H2O)‐(κN1,1 κO2:2 κO1 L1d)2}K0.5(μ‐O)2]n ? H2O ( 16 ). The synthesized complexes 3 – 9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80–99 %.  相似文献   

16.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

17.
A new family of ruthenium complexes based on the N‐pentadentate ligand Py2Metacn (N‐methyl‐N′,N′′‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) has been synthesised and its catalytic activity has been studied in the water‐oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4) to generate the WO intermediates [RuII(OH2)(Py2Metacn)]2+, [RuIII(OH2)(Py2Metacn)]3+, [RuIII(OH)(Py2Metacn)]2+ and [RuIV(O)(Py2Metacn)]2+, which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [RuIV(O)(Py2Metacn)]2+ has a long half‐life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, 18O‐labelling and theoretical studies, and the conclusion is that the rate‐determining step is a single‐site water nucleophilic attack on a metal‐oxo species. Moreover, [RuIV(O)(Py2Metacn)]2+ is proposed to be the resting state under catalytic conditions. By monitoring CeIV consumption, we found that the O2 evolution rate is redox‐controlled and independent of the initial concentration of CeIV. Based on these facts, we propose herein that [RuIV(O)(Py2Metacn)]2+ is oxidised to [RuV(O)(Py2Metacn)]2+ prior to attack by a water molecule to give [RuIII(OOH)(Py2Metacn)]2+. Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2)(Py2Metacn)]2+ (M=Ru, Fe) complexes is due to the difference in the redox stability of the key MV(O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.  相似文献   

18.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

19.
An unusual heterobimetallic bis(triphenylphosphane)(NO2)AgI–CoIII(dimethylglyoximate)(NO2) coordination compound with both bridging and terminal –NO2 (nitro) coordination modes has been isolated and characterized from the reaction of [CoCl(DMGH)2(PPh3)] (DMGH2 is dimethylglyoxime or N,N′‐dihydroxybutane‐2,3‐diimine) with excess AgNO2. In the title compound, namely bis(dimethylglyoximato‐1κ2O,O′)(μ‐nitro‐1κN:2κ2O,O′)(nitro‐1κN)bis(triphenylphosphane‐2κP)cobalt(III)silver(I), [AgCo(C4H7N2O2)2(NO2)2(C18H15P)2], one of the ambidentate –NO2 ligands, in a bridging mode, chelates the AgI atom in an isobidentate κ2O,O′‐manner and its N atom is coordinated to the CoIII atom. The other –NO2 ligand is terminally κN‐coordinated to the CoIII atom. The structure has been fully characterized by X‐ray crystallography and spectroscopic methods. Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) have been used to study the ground‐state electronic structure and elucidate the origin of the electronic transitions, respectively.  相似文献   

20.
The heterogeneous phase reaction of excess sodium salt of 2-hydroxypyridine (OHpy) with [Ru(κ2C,O-RL)(PPh3)2(CO)Cl] (1) afforded complexes of the type [Ru(κ1C-RL)(PPh3)2(CO)(Opy)] (2) in excellent yield [κ2C,O-RL is 4-methyl-6-((N-R-arylimino)methyl)phenolato-C2,O), κ1C-RL is 4-methyl-6-((N-R-arylimino)methyl)phenol-C2) and R is H, Me, OMe, Cl]. The chelation of Opy is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. The 12 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite, and nitrate complexes of 1. The spectral (UV-vis, IR, NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi-reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.65–0.69 V versus Ag/AgCl. The crystal and molecular structures of [Ru(κ1C-HL)(PPh3)2(CO)(Opy)]·2C6H6·0.5H2O, 2(H)·2C6H6·0.5H2O and [Ru(κ1C-ClL)(PPh3)2(CO)(Opy)]·2C6H6·0.25H2O, 2(Cl)·2C6H6·0.25H2O are reported, which revealed a distorted octahedral RuC2P2NO coordination sphere. The pairs (P,P), (C,O), and (C,N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号