首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在热乙醇中合成了2-乙酰基噻吩缩异烟酰肼及其与Cd(II)、Cu(II)和Zn(II)形成的三种配合物;利用元素分析、摩尔电导测定,以及红外光谱、紫外光谱和热分析确定了合成产物的组成和结构,并测定了配合物的组成及发光性质.结果表明,酰肼的配位方式的不同导致配合物呈现不同的发光性质.  相似文献   

2.
Organotin(IV) Schiff base complexes of the type (L)SnR2 [where R?CH3, C6H5 or CH2CH2CO2 CH3], (LH)Sn(C6H5)3 and (L)SnCl(CH2CH2CO2 CH3) [where LH2?2-N-salicylideneimino-2-methyl-1-propanol, derived from the condensation of salicylaldehyde and 2-amino-2-methyl-1-propanol] have been prepared and characterized on the basis of their elemental analyses, IR, 1H, 13C and 119Sn NMR studies. In these mononuclear complexes the Schiff base acts either as a dianionic tridentate or as a monobasic bidentate moiety by coordinating through an alkoxy group, an azomethine nitrogen and a phenoxide ion to tin. Sulphur dioxide inserts in the tin–methyl/–phenyl bond in the above Schiff base complexes to give tin–O–sulphinates of formulae (L)RSn(SO2R) and (LH)(C6H5)2Sn(SO2C6H5).  相似文献   

3.
The tridentate ONO-donor Schiff base ligand derived from the condensation of 1-ferrocenyl-1,3-butanedione and 2-aminophenol, generated in situ and treated further with potassium tert-butoxide, reacted in THF with Co(NO3)2·6H2O in the presence of pyridine to afford the ionic complex [{(η5-C5H5)Fe(η5-C5H4)-C(O)CH=C(CH3)N-C6H4-2-O}2Co(III)]-[K(HOCH2CH3)2]+ (1, 50% yield). Compound 1 was characterized by elemental analysis, FT-IR, and multidimensional 1H and 13C NMR spectroscopy. Single-crystal X-ray diffraction reveals that the two metalloligands are meridionally coordinated to a Co(III) ion that adopts a slightly distorted octahedral geometry. The doubly solvated potassium counter-ion is asymmetrically positioned with respect to the two metalloligands. Such an arrangement allows the observation by 1H NMR of restricted rotation of the ferrocenyl units and the splitting of both carbonyl and imine carbons, thus suggesting that the structure observed in the solid state is retained in solution. Complex 1 exhibits in its cyclic voltammetry curve two anodic reversible waves attributed to the oxidation of Co(III)-phenolates into Co(III)-phenoxyl radical and that of the ferrocenyl fragment into its ferrocenium counterpart.  相似文献   

4.
The VO(IV) complexes of tridentate ONO Schiff ligands were synthesised and characterized by IR, UV–vis and elemental analysis. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < NO2 and H < Cl. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the VO(IV) complexes were carried out in the range of 20–700 °C. The VOL1(OH2) decomposed in two steps whereas the remaining six complexes decomposed in three steps. The thermal decomposition of these complexes is closely related to the nature of the Schiff base ligands and proceeds via first order kinetics.  相似文献   

5.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminobenzoic acid in 1:2 ratio. Metal complexes are prepared and characterized using elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, 1H NMR, ESR and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [MCl(L)(H2O)]·2H2O (where M = Cr(III) and Fe(III)); [M(L)]·yH2O (where M = Mn(II), Ni(II), Cu(II) and Zn(II), y = 1–2) and [M(L)(H2O)nyH2O (where M = Co(II) (n = y = 2), Co(II) (n = y = 1), Ni(II) (n = 2, y = 1). The molar conductance data reveal that all the metal chelates were non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negative tetradentate manner with NOON donor sites of the azomethine-N and carboxylate-O. The 1H NMR spectral data indicate that the two carboxylate protons are also displaced during complexation. From the magnetic and solid reflectance spectra, it was found that the geometrical structure of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II)), square planar (Cu(II)), trigonal bipyramidal (Co(II)) and tetrahedral (Mn(II), Ni(II) and Zn(II)). The thermal behaviour of these chelates showed that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the ligand molecule in the subsequent steps. The biological activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.  相似文献   

6.
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = ?0.95 cm?1.  相似文献   

7.
A new monobasic bidentate ON donor Schiff base PS–LH2 (where PS–LH2 = polystyrene-anchored Schiff base obtained by condensation of chloromethylated polystyrene (containing 1.17 mmol of chlorine per gram of resin cross-linked with 2% divinylbenzene), 2-hydroxy-1-naphaldehyde and 4-aminosalicylic acid has been synthesized. PS–LH2 reacts with metal complexes to form polystyrene-anchored complexes: PS–LHM(CH3Coo) · DMF (where M = Cu, Zn, Cd, UO2), PS–LHZr(OH)2(CH3Coo) · 2DMF, PS–LHFeCl2 · 2DMF, PS–LHM′(CH3Coo) · 3DMF (where M′ = Mn and Ni) and PS–LHMoo2(acac), where acacH = acetylacetone. The polystyrene-anchored complexes have been characterized by elemental analysis, IR, ESR and magnetic susceptibility measurements. The per cent reaction conversion of PS–LH2 to polystyrene supported coordination compounds lies between 30–95. Shifts of the azomethine ν(C=N) and phenolic ν(C–O) stretches are indicative of ON donor behaviour of the polystyrene-anchored ligands. The complexes, PS–LHCu(CH3Coo) · DMF, PS–LHFecl2 · 2DMF, PS–LHMn(CH3Coo) · 3DMF and PS–LHNi(CH3Coo) · 3DMF are paramagnetic, while PS–LHZn(CH3Coo) · DMF, PS–LHCd(CH3COO) · DMF, PS–LHUo2(CH3Coo) · DMF, PS–LHZr(OH)2(CH3COO) · 2DMF and PS–LHMoO2(acac) are diamagnetic. The copper(II) complex exhibits a square planar structure, zinc(II) and cadmium(II) complexes have tetrahedral structures, nickel(II), manganese(II), iron(III), dioxomolybdenum(VI) and dioxouranium(VI) complexes have octahedral structure and zirconium(IV) complex is pentagonal bipyramidal.  相似文献   

8.
A series of novel zirconium complexes {R2Cp[2‐R1‐6‐(2‐CH3OC6H4N?CH)C6H3O]ZrCl2 ( 1 , R1 = H, R2 = H, 2 : R1 = CH3, R2 = H; 3 , R1 = tBu, R2 = H; 4 , R1 = H, R2 = CH3; 5 , R1 = H, R2 = n‐Bu)} bearing mono‐Cp and tridentate Schiff base [ONO] ligands are prepared by the reaction of corresponding lithium salt of Schiff base ligands with R2CpZrCl3·DME. All complexes were well characterized by 1H NMR, MS, IR and elemental analysis. The molecular structure of complex 1 was further confirmed by X‐ray diffraction study, where the bond angle of Cl? Zr? Cl is extremely wide [151.71(3)°]. A nine‐membered zirconoxacycle complex Cp(O? 2? C6H4N?CHC6H4‐2? O)ZrCl2 ( 6 ) can be obtained by an intramolecular elimination of CH3Cl from complex 1 or by the reaction of CpZrCl3·DME with dilithium salt of ligand. When activated by excess methylaluminoxane (MAO), complexes 1–6 exhibit high catalytic activities for ethylene polymerization. The influence of polymerization temperature on the activities of ethylene polymerization is investigated, and these complexes show high thermal stability. Complex 6 is also active for the copolymerization of ethylene and 1‐hexene with low 1‐hexene incorporation ability (1.10%). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The reaction of aminomethylated polystyrene (PSCH2-NH2) and 2-hydroxyacetanilide in DMF results in the formation of polystyrene-anchored monobasic bidentate Schiff base, PSCH2-LH (I). On the other hand, the reaction of chloromethylated polystyrene (PSCH2-Cl), 3-formylsalicylic acid, ethylenediamine and acetylacetone in DMF in presence of ethyl acetate (EA) and triethylamine (TEA) produces another polystyrene-anchored dibasic tetradentate Schiff base, PSCH2-L′H2 (II). BothI andII react with a number of di-, tri-and hexavalent metal ions like Co, Ni, Cu, Zn and Cd to form polystyreneanchored coordination compounds, and these have been characterized and discussed.  相似文献   

10.
Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)~5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.  相似文献   

11.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

12.
Metal complexes of two general formulae [M(L)(Cl)(H2O)2] [M = Mn(II), Co(II), Ni(II) and Cu(II)] and [M(L)(H2O)] [M = Zn(II) and Cd(II)] with pyrazine-2-carbohydrazone of 2-hydroxy-5-methylacetophenone (H2L) are synthesized and characterized by microanalytical, thermal, magnetic susceptibility measurement, spectroscopic (IR, 1H NMR, 13C NMR), mass, molar conductance, X-ray powder diffraction, ESR and SEM studies. While the molar conductance measurements in DMSO indicated their non-electrolytic nature, the spectroscopic studies confirmed a tridentate ONO donor behaviour of the ligand towards the central metal ion. Based on the physico-chemical studies monomeric octahedral geometry around Mn(II), Co(II), Ni(II) and Cu(II) ions (i.e. for the first series of complexes) whereas tetrahedral to Zn(II) and Cd(II) ions (i.e. for the second series of complexes) are suggested. Based on the thermal behavior of the complexes, various kinetic and thermodynamic parameters were evaluated using Coats-Redfern method. The ligand and its metal complexes were screened for in vitro antibacterial and antifungal activity against Gram +ve S. aureus, B. subtilis and Gram –ve E. coli and S. typhi. and fungal strains, C. albicans and A. niger. The observed data infer promising biological activity of some of these complexes compared the parent ligand against all bacterial and fungal species.  相似文献   

13.
Two new cadmium(II)–terephthalate complexes, 1{[Cd2(μ-terephthalate)2(L1)2]·9H2O} (1) and [{Cd(H2O)(L2)}2(μ-terephthalate)](terephthalate) · 10H2O (2), where L1 = (E)-N1,N1-diethyl-N2-(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine; L2 = N,N′-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine; have been synthesized by a conventional solution method. Characterization by single crystal X-ray crystallography shows that compound 1 is composed of 1-D polymeric zig-zag chains with distorted pentagonal-bipyramidal cadmium centers. Compound 2 consists of centrosymmetric dinuclear complexes with a distorted pentagonal-bipyramidal cadmium center in which one terephthalate ligand bridges the metal centres and another terephthalate anion with water of crystallization forms a H-bonding network.  相似文献   

14.
The reaction of 3-formylsalicylic acid with morpholine N-thiohydrazide produces 3-carboxy-2-hydroxybenzaldehyde morpholine N-thiohydrazone (H2chbmth) which remains in equilibrium in solution with its corresponding thiol form H3chbmthol having an NSO donor set of atoms. The reactions of the thiohydrazone ligand with different organometallic compounds viz. R2MCl2 (R?=?π-C5H5 & M?=?Ti/Zr; R?=?Me/Ph & M?=?Sn; R?=?OMe & M?=?Sn), (π-C5H5)2Ti(OMe)Cl2 and RMCl3 (R?=?Me/Ph & M?=?Sn; R?=?π-C5H5 & M?=?Ti) leading to the syntheses of many new organometallic derivatives have been studied. In all of the complexes the dianion of the H3chbmthol ligand functions as a dibasic tridentate NSO donor. The reactions of [(π-C5H5)Ti(Hchbmthol)Cl] and [MeSn(Hchbmthol)Cl], isolated in this study, with Me3SiE (where, E stands for NMe2 and C≡CPh) and MeSH have also been studied and many new organoderivatives of these two metal ions isolated. All the compounds under study have been characterized by elemental analyses, magnetic susceptibilities, molar conductance values, molecular weights and spectroscopic (UV-Vis, IR, 1H NMR) data. Based upon these data the geometry of the compounds has also been proposed.  相似文献   

15.
The reaction of a solution of MoO2(acac)2 in CH3OH and salicylidene 2-picoloyl hydrazone as a tridentate ONO donor Schiff base (ONO) afford a six-coordinated Mo(VI) complex [MoO2(ONO)(CH3OH)], with a distorted octahedral configuration. [MoO2(ONO)(CH3OH)] was isolated as an air-stable crystalline solid and fully characterized by single-crystal X-ray structure analysis. [MoO2(ONO)(CH3OH)] shows reactivity in the oxidation of sulfides to their corresponding sulfoxides using urea hydrogen peroxide as the oxidant at room temperature under air.  相似文献   

16.
The Schiff base ligand, N,N′-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML2X2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV–vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT–DNA by intercalation modes. Novel chloroform soluble ZnL2Cl2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.  相似文献   

17.
Neodymium-based heterocyclic Schiff base complex was prepared and applied for the coordination polymerization of isoprene. This complex polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 95%) and high molecular weight (ca, 10^5) in the presence of the triisobutyl aluminium (AliBu3) as cocatalyst, The microstructure of obtained polyisoprene was investigated by FTIR, 1^H NMR. Two different kinds of active centers in the catalyst system were examined by GPC method.  相似文献   

18.
19.
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N′-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L1) and N,N-diethyl-N′-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L1)(SCN)2(OH2) (1) and [{Ni(L2)(SCN)}2] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.  相似文献   

20.
A new Co(II) complex of general formula [Co(L)2] has been synthesized from a NNO tridentate Schiff base ligand, 2-[(piperidin-2-ylmethylimino)-methyl]-phenol (L). The title complex is characterized by elemental, spectroscopic, antibacterial, and single crystal X-ray structural studies. X-Ray crystallography reveals that the complex shows a distorted octahedral geometry around the Co(II) ion. The complex was tested against several bacteria and shows good antibacterial activities against almost all of the bacteria. The interactions of the title complex with calf thymus deoxyribonucleic acid (CT-DNA) have been investigated by electronic absorption and fluorescence spectroscopy, showing that the complex interacts with CT-DNA via partial intercalation. Thermogravimetric analysis (TGA) of the complex has also been reported and the result shows that the complex is thermally stable up to 134 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号