首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The N(4)-methylthiosemicarbazone derivatives H2DDMT (1) and H2DMMT (2) have been prepared from the reaction of 4-methylthiosemicarbazide with 2,3-dihydroxybenzaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Six new organotin(IV) complexes, [MeSnCl(DDMT)] (3), [BuSnCl(DDMT)] (4), [PhSnCl(DDMT)] (5), [MeSnCl(DMMT)] (6), [BuSnCl(DMMT)] (7), and [PhSnCl(DMMT)] (8) have been synthesized by direct reaction of corresponding organotin(IV) chloride(s) with these ligands. The ligands and their compounds have been characterized by elemental analysis, molar conductivity, UV–Vis, FT-IR, and NMR (1H, 13C, and 119Sn) spectroscopy. The molecular structures of 1 and 2 were determined by X-ray crystallography. Spectroscopic data suggested that the ligands were coordinated to tin(IV) as dinegative tridentate via phenoxide-O, azomethine-N, and thiolate-S atoms. The crystal structures revealed that the ligands exist in thione form in the solid state. In vitro cytotoxicity assays were carried out for all the compounds against MCF-7 cancer cell line. The results have shown that different organotin(IV) groups showed characteristic differences in their biological activity.  相似文献   

2.
Reaction of organotin(IV) chloride(s) with 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone, [HL] (1) yielded [MeSnCl2(L)] (2), [BuSnCl2(L)] (3), [Me2SnCl(L)] (4), and [Ph2SnCl(L)] (5). The ligand (1) and its organotin(IV) complexes have been characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of 5 was also determined by X-ray diffraction. There are two independent molecules in the asymmetric unit and the central tin(IV) atom is six-coordinate in distorted octahedral geometry. The ligand (1) and complexes were screened for their in vitro antibacterial activities. The cytotoxic activities of 15 were tested against A2780 and A2780/Cp8 cancer cell lines. The compounds have better antibacterial activities than the free ligand; 25 are more potent cytotoxic agents than 1, while the diphenyltin(IV) 5 is more active with IC50 values of 0.05 and 0.54?µmol?L?1 against A2780 and A2780/Cp8 cell lines, respectively.  相似文献   

3.
The reaction of pyruvic acid phenylhydrazone [HPAPD, (1)] with organotin(IV) chloride(s) leads to the formation of five new organotin(IV) complexes: [MeSnCl2(PAPD)] (2), [BuSnCl2(PAPD)] (3), [PhSnCl2(PAPD)] (4), [Me2SnCl(PAPD)] (5), and [Ph2SnCl(PAPD)] (6). The ligand [HPAPD, (1)] and its organotin(IV) complexes (26) have been characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, 1H, 13C, and 119Sn NMR spectral studies. Spectroscopic data suggested that HPAPD is coordinated to tin(IV) through the carboxylato-O and azomethine-N as a mononegative bidentate chelating agent; the coordination number of tin is five. Compound 1 and its organotin(IV) complexes (26) were assayed for in vitro antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The screening results show that 26 have better antibacterial activity than 1 and that 6 exhibits significantly better activity than 25.  相似文献   

4.
Four new tin(IV)/organotin(IV) complexes, [SnCl3(BPCT)] (2), [MeSnCl2(BPCT)] (3), [Me2SnCl(BPCT)] (4), and [Ph2SnCl(BPCT)] (5), have been synthesized by the direct reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] and stannic chloride/organotin(IV) chloride(s) in absolute methanol under purified nitrogen. HBPCT and its tin(IV)/organotin(IV) complexes (25) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, and 1H NMR spectral studies. In all the complexes, tin(IV) was coordinated via pyridine-N, azomethine-N, and thiolato-S from 1. The molecular structure of 2 has been determined by X-ray single-crystal diffraction analysis. Complex 2 is a monomer and the central tin(IV) is six-coordinate in a distorted octahedral geometry. The crystal system of 2 is monoclinic with space group P121/n1 and the unit cell dimensions are a?=?8.3564(3)?Å, b?=?23.1321(8)?Å, c?=?11.9984(4)?Å.  相似文献   

5.
Four new organotin(IV) complexes with 2-hydroxynaphthaldehyde-N(4)-ethylthiosemicarbazone [(H2DNET), (1)] of the type [MeSnCl(DNET] (2), [BuSnCl(DNET)] (3), [PhSnCl(DNET)] (4), and [Ph2Sn(DNET] (5) have been synthesized by the direct reaction of H2DNET (1) with organotin(IV) chloride(s) in the presence of potassium hydroxide in absolute methanol. All the compounds were characterized by elemental analyses, molar conductivity, UV-Vis, IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of ligand (1) has been confirmed by X-ray single crystal diffraction. Spectroscopic data clearly suggested that Sn(IV) center is coordinated with the ONS tridentate ligand (H2DNET) and exhibits a five-coordinate geometry in solution. Antibacterial studies were carried out in vitro against four bacterial strains. All organotin(IV) compounds (2–5) showed good activity against various bacteria but lower activity than the reference drug (Ciprofloxacin). The results demonstrate that organic groups attached to tin(IV) moiety have significant effect on their biological activities. Among them, diphenyltin(IV) derivative 5 exhibits significantly good activity than the other organotin(IV) derivatives (2–4).  相似文献   

6.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

7.
Abstract

The reactions of N′-2-hydroxyphenyl-6-methylpyridine-2-carbaldimine (LH) with tin(IV) chloride and organotin(IV) chlorides result in the formation of the corresponding tin(IV) and organotin(IV) complexes in which LH behaves as a uninegative tridentate ligand coordinating to the central tin atom via an N,N,O donor set. Crystal structure determinations of two of the compounds, n-butyldichloro[N′-2-hydroxyphenyl-6-methylpyridine-2-carbaldiminato(l-)N,N′,O]-tin(IV) (BuSnCl2.L) and diphenylchloro[N′-2-hydroxyphenyl-6-methylpyridine-2-carbaldiminato(l-)N,N′,O]tin(IV) (Ph2SnCl.L), have been performed and both structures feature distorted octahedral geometries about the tin centres. Systematic differences in the Sn-ligand separations are rationalised in terms of the reduced Lewis acidity of tin in Ph2SnCl.L.  相似文献   

8.
Six new organotin(IV) complexes were synthesized by direct reaction of RSnCl3 (R?=?Me, Bu and Ph) or R2SnCl2 (R?=?Me, Bu and Ph) and 2-hydroxyacetophenone thiocarbohydrazone [H2APTC] under purified nitrogen in the presence of base in 1?:?2?:?1 molar ratio (metal: base: ligand). Complexes 2–7 have been characterized by elemental analyses, molar conductivity, UV-Visible, IR and 1H NMR spectral studies. Complexes 27 are non-electrolytes. The molecular structure of [Me2Sn(APTC)]?·?(C2H5OH) (5) has been determined by X-ray diffraction analysis. The thiocarbohydrazone ligand (1) and 27 have been tested for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi and Enterococci aeruginosa.  相似文献   

9.
Four new complexes, [Ph3Sn(isopropylACDA)] (1), [Ph2SnCl(isopropylACDA)] (2), [Ph3Sn(secbutylACDA)] (3), and [Ph2SnCl(secbutylACDA)] (4), have been prepared from reaction between N-alkylated 2-amino-1-cyclopentene-1-carbodithioic acids (ACDA) with Ph2SnCl2 and Ph3SnCl in 1:1 ratio. All complexes are characterized by FTIR, multinuclear NMR (1H, 13C, and 119Sn) and mass spectrometry. In all complexes, the S–H proton has been removed and coordination takes place through the carbodithioate moiety. The 119Sn NMR data are consistent with five coordination of tin atom in solution. Complexes 2, 3, and 4 have also been confirmed by single X-ray crystallography. All three crystals are triclinic with space group P − 1. In complexes 2 and 4, the geometry around tin atom is distorted trigonal bipyramidal while in 3 the geometry is in between distorted tetrahedral and trigonal bipyramid. In all three structures, ligands are asymmetrically coordinated to tin atom. In addition, crystal structures are further stabilized by N–H···S hydrogen bonding.  相似文献   

10.
New organotin(IV) carboxylates, R2SnL2 (R=n-Bu: 1), R2Sn(Cl)L (R=n-Bu: 2), and R3SnL (R=Me: 3; n-Bu: 4; Ph: 5) have been synthesized by stirring 5-chloro-2-hydroxybenzoic acid HL with KOH and R2SnCl2 (R=n-Bu)/R3SnCl (R=Me, n-Bu, Ph) in methanol at room temperature. The complexes along with ligand have been characterized by FTIR, (1H, 13C) NMR, EI-MS, and single-crystal XRD crystallography. FTIR data indicated bidentate coordination of carboxylate. NMR data suggested six- or five-coordinate geometry of organotin(IV) carboxylates. Single-crystal XRD of 1 demonstrated skew-trapezoidal geometry around the tin center, with the basal plane occupied by four oxygens and the two butyl groups lying in distorted axial position. Complexes 1, 2, and 5 exhibited interaction with SS-DNA (salmon sperm) and suggests intercalating mode of binding. The complexes displayed significant antimicrobial activities against bacterial and fungal strains as compared to free ligand. The hemolytic activity of the complexes was lower compared to Triton-X 100 (positive control, 100% lysis) and higher than phosphate-buffered saline (negative control, 0% lysis). Complex 4 was the most potent inhibitor of bacterial/fungal growth.  相似文献   

11.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

12.
Some new tri- and diorganotin(IV) complexes of the general formula, R3Sn(H2L) and R′2Sn(HL) [where R = Me, n-Pr, n-Bu and Ph; R′ = Me, n-Bu, Ph and n-Oct; H3L = Schiff base (abbreviated as tren(4-Me-5-ImH)3) derived from condensation of tris(2-aminoethyl)amine (tren) and 4-methyl-5-imidazolecarboxaldehyde (4-Me-5-ImH)] have been synthesized. The coordination behaviour of Schiff base towards organotin(IV) moieties is discussed on the basis of infrared and far-infrared, 119Sn Mössbauer and multinuclear (1H, 13C and 119Sn) magnetic resonance (NMR) spectroscopic studies. Thermal studies of all of the synthesized organotin(IV) complexes have been carried out using TG, DTG and DTA techniques. The residues thus obtained from pyrolysis of the studied complexes have been characterized by X-ray powder diffraction analysis and IR. The newly synthesized complexes have been tested for their anti-inflammatory activity and toxicity (LD50).  相似文献   

13.
A series of organotin(IV) complexes of the general formula RxSnCl4?x.L (where R=Me, n?Bu, Ph; x = 2 or 3; L = pyrazole or pyrazol-5-one) have been prepared and characterized by elemental analyses, IR and NMR spectroscopy. The ligands used were found to coordinate with R3SnCl species as monodentate ligands via the more reactive nitrogen atom, to give pentacoordinate tin complexes, whilst they may coordinate with R2SnCl2 species as bidentate ligands through the N–N linkage to give hexacoordinate tin complexes. These were demonstrated mainly by spectroscopic data. The tautomeric behaviour of organotin complexes of pyrazol-5-one ligands in inert (CDCl3) and donor (DMSO-d6) solvents were also studied. The complexes were screened against six species of bacteria.  相似文献   

14.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

15.
In order to obtain a continuous source of mitotic metaphases, gill tissue of Aphaius fasciatus (Pisces, Cyprinodontiformes) has been successfully employed. Results gathered after exposure of fish to R2SnClpenG, R3SnClpenGNa, to the parents R2SnCl2, R3SnCl and to penGNa (penGNa = penicillinGNa; R = methyl, butyl and phenyl) suggest that both the parent organotin (IV) chloride and organotin (IV) chloropenG derivatives are toxic while penGNa exerts no significant toxic activity. Essentially, all of the chromosome abnormalities are classifiable as irregularly staining of chromosomes, breakages, side-arm bridges or pseudochiasmata.  相似文献   

16.
New organotin(IV) complexes with empirical formula Sn(SNNNS)R2, where SNNNS is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H2dapsme) or S-benzyldithiocarbazate (H2dapsbz) and R = Ph or Me, have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the Sn(dapsme)R2 (R = Ph and Me) have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors (N3S2) provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.  相似文献   

17.
Four new diorganotin(IV) complexes, R2SnL (L?=?La: R?=?Me 1, Ph 2; L?=?Lb: R?=?Me 3, and Ph 4), have been synthesized by reaction of hydrazone ONO donors, 5-bromo-2-hydroxybenzaldehyde furan-2-carbohydrazone (H2La) and 2-hydroxynaphthaldehyde furan-2-carbohydrazone (H2Lb) with diorganotin(IV) dichloride in the presence of a base. The compounds have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopies. Spectroscopic studies show that the hydrazone is a tridentate dianionic ligand, coordinating via the imine nitrogen and phenolic and enolic oxygens. The structures of H2Lb and 3 have also been confirmed by X-ray crystallography. The results show that the structure of 3 is a distorted square pyramid with imine nitrogen in apical position. The in vitro antibacterial activities of ligands and complexes have been evaluated against gram-positive (Bacillus cereus and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La and H2Lb show no activity but the diphenyltin(IV) complexes exhibit good activities towards two bacterial strains in comparison with standard bacterial drugs.  相似文献   

18.
Reactions of triorganotin chlorides with potassium salt of O-alkyl trithiophosphate [ROP(S)(SK)2; R = Me, Pri, Ph] in 2:1 molar ratio in anhydrous benzene yield triorganotin O-alkyl trithiophosphate of the type ROP(S) [SSnR′3]2 R = Me, Pri; Ph, R′ = Prn, Bun, Ph] which are found to be monomeric in nature. These complexes are soluble in common organic solvents. Similar reactions of diorganotin chloride with dipotassium salt of S-alkyl trithiophosphate yield diorganotin-S-alkyl trithiophosphate of the type [(RS)P(O)S2]2SnR′2; R = Me, Pri; R′ = Me, Et, Ph, which also are found to be monomeric in nature and are soluble in common organic solvents. The newly synthesized derivatives have been characterized by physicochemical and spectroscopic techniques, IR, NMR (1H, 31P, and 119Sn).  相似文献   

19.
Some new organotin(IV) complexes with salicylaldehyde aniline-N-thiohydrazone (L1) and cinamaldehyde aniline-N-thiohydrazone (L2) of the type (p-ClC6H4)3Sn[L] Cl and (p-ClC6H4)2Sn[L]Cl2 have been synthesized (where L = L1 and L2). The complexes and ligands were characterized by elemental analysis and spectral (UV-vis, IR and 1H NMR) studies. In all the complexes, ligands act as bidentate, coordination through sulphur and azomethane nitrogen. Complexes are 1:1 metal ligands complexes. Antifungal studies of some complexes against Rhizoctonia bataticola fungal strain have been carried out.  相似文献   

20.
New organotin(IV) complexes of the general formula R3Sn(L) (where R=Me, n-Bu and HL=L-proline; R=Me, Ph and HL=trans-hydroxy-L-proline and L-glutamine) and R2Sn(L)2 (where R=n-Bu, Ph and HL=L-proline; R=Ph, HL=trans-hydroxy-L-proline) have been synthesized by the reaction of RnSnCl(4-n) (where n=2 or 3) with sodium salt of the amino acid (HL). n-Bu2Sn(Pro)2 was synthesized by the reaction of n-Bu2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn M?ssbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear (1H, 13C and 119Sn) NMR spectral studies. The 119Sn M?ssbauer and IR studies indicate that L-proline and trans-hydroxy-L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy-L-proline, in which the carboxylate group acts as bidentate group. L-glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD50 values are >1000 mg kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号