首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Magic-angle spinning (MAS) NMR spectroscopy is used to study the local structure and spin delocalisation in Prussian blue analogues (PBAs). We selected two common archetypes of PBAs (A(I)M(II)[M(III)(CN)(6)]·xH(2)O and M(II)(3)[M(III)(CN)(6)](2)·xH(2)O, in which A(I) is an alkali ion, and M(II) and M(III) are transition-metal ions) that exhibit similar cubic frameworks but different microscopic structures. Whereas the first type of PBA contains interstitial alkali ions and does not exhibit any [M(III)(CN)(6)](3-) vacancies, the second type of PBA exhibits [M(III)(CN)(6)](3-) vacancies, but does not contain inserted alkali ions. In this study, we selected Cd(II) as a divalent metal in order to use the (113)Cd nuclei (I=1/2) as a probe of the local structure. Here, we present a complete MAS NMR study on two series of PBAs of the formulas Cd(II)(3)[Fe(III)(x)Co(III)(1-x)(CN)(6)](2)·15H(2)O with x=0 (1), 0.25 (2), 0.5 (3), 0.75 (4) and 1 (5), and CsCd(II)[Fe(III)(x)Co(III)(1-x)(CN)(6)]·0.5H(2)O with x=0 (6), 0.25 (7), 0.5 (8), 0.75 (9) and 1 (10). Interestingly, the presence of Fe(III) magnetic centres in the vicinity of the cadmium sites has a magnifying-glass effect on the NMR spectrum: it induces a striking signal spread such that the resolution is notably improved compared to that achieved for the diamagnetic PBAs. By doping the sample with varying amounts of diamagnetic Co(III) and comparing the NMR spectra of both types of PBAs, we have been able to give a view of the structure which is complementary to that usually obtained from X-ray diffraction studies. In particular, this study has shown that the vacancies are not randomly distributed in the mesoporous PBAs. Moreover the cadmium chemical shift, which is a measure of the hyperfine coupling, allows the estimation of the spin density on the cadmium nucleus, and consequently, the elucidation of the spin delocalisation mechanism in these compounds along with its dependency on structural parameters.  相似文献   

3.
Binary complex salts, [Co(En)3][Fe(CN)6] · 2H2O and [Co(En)3]4[Fe(CN)6]3 · 15H2O, are synthesized. The properties of the salts and their thermolysis in air, dihydrogen, and argon are studied. Oxides of the central ions of the binary complex salts are found to be the thermolysis products in an oxidative atmosphere. Solid solutions (intermetallic compounds) CoFe are the thermolysis products in the reductive atmosphere, whereas intermetallides containing considerable amounts of C and N and an impurity of Co and Fe oxides are the thermolysis products in an inert atmosphere. Gaseous thermolysis products in dihydrogen and argon are NH3, hydrocarbons, and ethylenediamine.  相似文献   

4.
<正> The crystal and Molecular structure of [K(18-crown-6)](Bi(SCN)Cl3] has been deterained by X-ray diffraction Method. Its crystal is triclinic, space group Pl,with a = 9.233(4), b = 11.661(5), c=11.738(5)A,a= 81.82(4)° ,β=71.47(4)°,γ=75.55(4)°, and Z = 2. The final structural refine-ment converged with unweighted and weighted R factors of 0.051 and 0.047 for 2924 observed reflections. Results of the structure analysis indicate that the K+ ion enters the cavity of the 18-crown-6 to form the complex cation and one Bi(Ⅲ) atom, one SCN ligand and three Cl atoms fora the anion. Each Bi(Ⅲ) atoa is coordinated by four Cl atoas, of which two are shared with other Bi(Ⅲ) atom, one N atom and one S atoa from two SCN ligands respectively shared with a third Bi(Ⅲ) atoa, forming octahedral geometry.  相似文献   

5.
K4[Fe(CN)6]-K3[Fe(CN)6]体系催化分光光度法测定痕量汞   总被引:1,自引:0,他引:1  
建立了一种测定痕量汞的催化分光光度新方法,它是基于汞能催化亚铁氰化钾分解生成Fe2 ,生成的Fe2 又与铁氰化钾反应生成兰色胶体溶液.方法的相对标准偏差≤5.3%,回收率为98.8%~104.8%之间,检出限为9.8×10-7 g/L;线性范围为0~0.050 μg/mL.  相似文献   

6.
Abstract

In an attempt to form new multi-dimensional structures of cyano complexes including cadmium(II) and copper(I), four new complexes were obtained successively from an aqueous solution at intervals of from a few days to a few months. The complex 1 obtained first was unstable in the atmosphere. The crystal structures of the other complexes (2–4) obtained from second to fourth were determined by single crystal X-ray structure determinations. Their crystal data are as follows: 2 Cd(H2O)2 Cu(CN)3·2H2O, monoclinic, C2/m, a = 14.038(1), b = 9.944(1), c = 7.738(1) Å, β = 116.019(7)°, Z = 4; 3 K[Cd(H2O)2Cu2(CN)5]·2H2O, triclinic, PI, a = 17.429(9), b = 16.519(7), c = 10.085(5) Å, α = 128.60(3), β = 137.44(2), γ = 45.82(2)°, Z = 4; 4 K2[Cd(H2O)Cu4(CN)8]·1.5H2O, monoclinic, C2/c, a = 19.387(2), b = 16.056(3), c = 12.663(2)Å, β = 110.419(9)°, Z = 4. The main structural feature found in the complexes is that the whole framework consists of two networks, a Cd-Cu(I)-CN complex network that has an infinite network formed with bridging cyano groups between the metal atoms and a network formed with hydrogen bonding among water molecules. The second network is connected to Cd in the Cd-Cu(I)-CN complex network via a water ligand coordinated to Cd. In 2 a planar network of [CdCu(CN)3] complexes are stacked along the c axis and the second network links the stacked complexes. 3 has a stacked structure of [Cd(H2O)2Cu(CN)5]2? in a bi-layered structure. The second network of 3, which includes K+ ions with an electrostatic interaction, spreads over the crystal, penetrating vacant spaces of the metal complex network. 4 has a double lattice structure with a pair of enantiomeric three-dimensional [Cd(H2O)Cu4(CN)8]2? complexes inter-penetrating each other. There are three structural factors for forming these framwork structures: (1) a non-planar coordination structure for Cd(II) that extends the planar structure of the Cu(I)-CN complex to a three-dimensional structure for the Cd-Cu(I)-CN complex; (2) a trigonal planar coordination structure for Cu(I) that generates vacant space in the metal complex network and makes possible hydrogen bonds to form the second network; (3) structural distortions of bridging cyano groups and a coordination structure of Cu(I) that cause variations of the metal complex network structure.  相似文献   

7.

Two ion pair complexes, [Ru(bpy)3]2[Fe(CN)6]I [sdot] 7H3O (1) and [Ru(bpy)3][Fe(CN)5NO](CH3OH) [sdot] H2O (2) (bpy = 2,2-bipyridine) have been synthesized and structurally characterized. X-Ray crystallographic structures of 1 and 2 both show Fe(III) and Ru(II) in distorted octahedral environments. In both complexes, H-bonding interactions between an uncoordinated water molecule and the nitrogen atom of a cyano group exist.  相似文献   

8.
The trinuclear complex bis(18-crown-6)thallium tetracyanoplatinate [Tl2(18-crown- 6)2Pt(CN)4]·2H2O was prepared and its structure was determined by X-ray diffraction analysis. The compound (C28H52N4O14PtTl2, Mr = 1272.57) crystallizes in monoclinic, space group P21/n with a = 10.5180(10), b = 8.6162(8), c = 21.118(2) (A), β = 92.577(2)°, V = 1911.9(3) (A)3, Z = 2, Dc = 2.211 g/cm3, F(000) = 1200, μ = 12.123 mm-1, R = 0.0181 and wR = 0.0427. The linearly arranged three metals are sandwiched by two 18-crown-6 molecules.  相似文献   

9.
10.
The molecular and crystal structure of the title complex (I) obtained by addition of tin fluoride in a hydrofluoric acid solution to 18-crown-6 in methanol was investigated by X-ray structure analysis. The crystals are monoclinic, space group P21/n, a = 13.497(3), b = 7.806(2), c = 9.892(2) Å, β = 95.57(3)°, Z = 2 for C12H32F4O10Sn. In the polymer chain, the crown ether molecules alternate with the inorganic complexes [trans-SnF4(H2O)2] and are linked to them by O-H...O type hydrogen bonds involving the intermediate water molecules. The weak C-H...F interactions bind the chains into the layers which are parallel to the xz plane.  相似文献   

11.
Zusammenfassung Die Absorptions- und Reflexionsspektren der Oktocyanokomplexe desMo(IV) undW(IV) sowie die Absorptionsspektren der Oktocyanotomplexe desMo(V) undW(V) werden mitgeteilt. Die Spektren werden unter Zugrundelegung der durch Raman- und IR-spektroskopische Untersuchungen gefordertenD 4d-Symmetrie dieser Verbindungen interpretiert. Die beobachteten Banden niedriger Intensität (log<3) werden Übergängen in einem Termsystem zugeordnet, das für die Konfigurationend 2 undd 1 und die SymmetrieD 4d berechnet worden ist. Banden hoher Intensität (log>3) werden auf Übergänge in antibindende Zustände zurückgeführt, an denen höherep-Zustände des Zentralions sowie Ligandenzustände beteiligt sind. Die erhaltenen Werte des Feldparameters stimmen mit ligandenfeldtheoretischen Erwartungen überein.
Absorption and reflection spectra of the octacyanides ofMo(IV) andW(IV) and the absorption spectra of the octacyanides ofMo(V) andW(V) are presented. The spectra are interpreted in terms of theD 4d symmetry of the compounds supported by investigations of Raman and infrared spectra. Bands of low intensity (log<3) correspond to transitions between levels obtained in the case of the configurationsd 2 andd 1 respectively, in a field ofD 4d symmetry. Bands of high intensity (log>3) are attributed to transitions into antibonding levels in which p-orbitals of the central ion and ligand orbitals participate. The values of the field parameter obtained are in accord with ligand field theory.

Résumé Les spectres d'absorption et de réflexion des complexes octocyanurés duMo(IV) et duW(IV) ainsi que les spectres d'absorption des mêmes complexes deMo(V) et de W(V) sont présentés. Les spectres sont interprétés en supposant la symétrieD 4d des molécules indiquée par des analyses des spectres Raman et infrarouges. Les bandes de faible intensité (log<3) sont attribuées à des transitions dans un système de niveaux, calculé pour les configurationsd 2 etd 1, respectivement, en symétrieD 4d. Des bandes de forte intensité (log>3) sont attribuées à des transitions vers des niveaux antiliants auxquels participent des fonctions élevéesp de l'ion central et des fonctions des groupes liés. Les valeurs obtenues pour le paramètre de champ sont en accord avec les prévisions de la théorie.
  相似文献   

12.
《Polyhedron》2003,22(25-26):3383-3387
Three new octahedral rhenium chalcocyanide cluster compounds [CuNH3(trien)]2[Re6S8(CN)6] · 7H2O (1), [CuNH3(trien)]2[Re6Se8(CN)6] (2) and [CuNH3(trien)]2[Re6Te8(CN)6] · H2O (3) exhibiting ionic structures have been obtained by the diffusion of an ammonia solution of KCs3[Re6S8(CN)6] (for 1), K4[Re6Se8(CN)6] · 3.5H2O (for 2) or Cs4[Re6Te8(CN)6] · 2H2O (for 3) into a glycerol solution of CuCl2 · 2H2O in the presence of trien (trien=triethylenetetramine). The compounds have been characterized by single-crystal X-ray diffraction. All three compounds contain a cationic complex [CuNH3(trien)]2+ which was not described previously.  相似文献   

13.
Two new cadmium dimethylpyrazine (2,3-dimethylpyrazine or 2,5-dimethylpyrazine) tetracyanonickelate benzene clathrates, [Cd(C6H8N2)Ni(CN)4]·C6H6, have been prepared in powder form and characterized by FT-IR spectroscopy, Raman spectroscopy, X-ray diffraction, thermal analyses and elemental analyses. Vibrational assignments are proposed for the bands of the host lattice and guest molecule. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from X-ray diffraction measurements. The C, H, N, Cd and Ni analyses were carried out for all the compounds. Thermal behaviors of these compounds are followed using TG and DTA techniques. The FT-IR, Raman spectroscopic, XRD, thermal and elemental analyses results propose that these compounds are similar in structure to the Hofmann-type clathrates. Their structure consists of planar polymeric layers, {M–Ni(CN)4}, formed from Ni(CN)4 anions coordinated to the bridging 2,3- or 2,5-dimethylpyrazine molecules bound directly to the cadmium. The cadmium atoms are bound to four N atoms of the CN ions and, the Ni atoms are surrounded by four C atoms of the CN groups in a square-planar layer.  相似文献   

14.
硫氰酸根的结构为N三C-S-,其两端的N原子和S原子分别有一对和三对孤对电子,因此,硫氰酸根可采用多种不同的配位模式与金属离子发生配位.硫氰酸根可作为单齿配体与一个金属离子配位,形成M-SCN或M-NCS的单核配合物,也可以作为桥联配体同时与两个、三个甚至四个金属离子配位形成多核配合物[1-3];另一方面,硫氰酸根是一个具有一定共轭性的偶极子,可传递磁相作用.因此,选择硫氰酸根作为桥联配体,将多个顺磁金属离子桥联形成一维、二维或三维结构的多核金属配合物分子,并研究它们的磁性已成为分子磁学的一个研究领域[4-6].本文仅报道标题配合物的合成与晶体结构.  相似文献   

15.
Two new benzene clathrates of the form Cd(4,4-bipyridyl)M(CN)4 · 2C6H6, (M=Cd or Hg) have been prepared in powder form. Their spectral data were compared with those of the corresponding host complexes and found to be consistent with the host structure found in Td-type clathrates.  相似文献   

16.
The crystal structures of a new solvate of the ditopic receptor 1,3-calix[4]-bis-crown-6, Bis-C6, and of 1,3-calix[4]-bis-(benzo-crown-6), Bis-benzoC6, are reported. Bis-C6.3 CH3CN (1) crystallizes in the monoclinic space group P21/n, a = 14.388(3), b = 26.947(8), c = 14.707(4) Å, = 113.19(3)°, V = 5241(5) Å3, Z = 4. Refinement led to a final conventional R value of 0.092 for 2723 reflections. The structure of (1) differs from the previously reported structure of Bis-C6.4 CH3CN by the conformation of one crown either chain. Two acetonitrile molecules are in the close neighbourhood of the crown ether cavities. Bis-benzoC6.3 CH3CN (2) crystallizes in the monoclinic space group P21/c, a = 10.391(4), b = 17.264(11), c = 30.426(9) Å, = 94.62(3)°, V = 5440(7) Å3, Z = 4. Refinement led to a final conventional R value of 0.106 for 2965 reflections. Two acetonitrile molecules are located near the crown ether cavities, as in (1). One of the crown ether conformations is the same as in the binuclear caesium complex of Bis-benzoC6, supporting the hypothesis of a preorganization of this ligand towards the complexation of this ion; the second crown ether chain is partially disordered.  相似文献   

17.
Two new bimetallic cyano-bridged complexes [Ce(DMSO)4(H2O)3Fe(CN)6]·H2O 1 and [La(DMSO)4(H2O)3Co(CN)6]·H2O 2 have been prepared by the ball milling reaction method and structurally characterized by X-ray single-crystal structure analyses. Crystallographic data for 1:C14H32CeFeN6O8S4, Mr = 736.67, monoclinic, space group P21/n, a = 14.952(1), b =13.7276(9), c = 15.392(1) (A), β = 108.288(1)°, V = 2999.6(4) (A)3, Z = 4, Dc= 1.631 g/cm3,μ =2.304 mm-1, F(000) = 1480, R = 0.0593 and wR = 0.1611; and those for 2: C14H32CoLaN6O8S4,Mr=738.54, monoclinic, space group P21/n, a = 14.945(3), b = 13.731(3), c = 15.300(3) (A), β=107.806(1)°, V= 2989.3(11) (A)3, Z = 4, Dc = 1.641 g/cm3,μ = 2.288 mm-1, F(000) = 1480, R =0.0383 and wR = 0.1132. In both complexes the lanthanide ion is eight-coordinated in a square antiprism arrangement, and the Fe(Ⅲ) or Co(Ⅲ) ion in a nearly regular octahedral environment.The [LnM(CN)6(DMSO)4(H2O)3]·H2O (Ln = Ce and M = Fe for 1; Ln = La and M = Co for 2)species are held together via hydrogen bonds by coordinated water molecules, lattice water molecules and nitrogen atoms of cyanide groups to form a three-dimensional framework.  相似文献   

18.
Shen  Zhen  Zuo  Jing-Lin  Shi  Fa-Nian  Xu  Yan  Song  You  You  Xiao-Zeng  Raj  S. Shanmuga Sundara  Fun  Hoong-Kun  Zhou  Zhong-Yuan  Che  Chi-Ming 《Transition Metal Chemistry》2001,26(3):345-350
Two bimetallic assemblies, K2[NiII(cyclam)]3[FeII(CN)6]2 · 12H2O (1) and [NiII(cyclam)]3[FeIII(CN)6]2 · 16H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane), were obtained by reaction of K4[Fe(CN)6] and [Ni(cyclam)](ClO4)2 in aqueous media at different temperatures. Their crystals were structurally determined and magnetic properties were studied. Both of the compounds have honeycomb-layered structures, which are formed by Fe6Ni6 units linked through the cyanide bridges. Structure (1) consists of polyanions containing NiII–NC–FeII linkages and K+ cations, while structure (2) is a two-dimensional neutral layer containing NiII–NC–FeIII linkages. The magnetic properties of (1) and (2) have been investigated in the 5–300 K range. Compound (1) exhibits a weak antiferromagnetic interaction with Weiss constant = –0.35 K; compound (2) shows ferromagnetic intralayer and antiferromagnetic interlayer interactions.  相似文献   

19.
<正> C34H69La2N13O34(Mr= 1418. 9) belongs to orthorhombic system, space group Pcab with a = 15. 513(3), b = 19. 463(5), c=38. 014(5)(?); Z = 8; V = 11477(4)(?)3; F(000) = 6000; μ=16.1cm-1(MoKa). The final R and Rw are 0. 045 and 0. 045, respectively. The molecule is Composed of one H2[2,2,1]2+, one [La(NO3)2[2,2, 1]]+, one La(NO3)63- and one solvent molecule CH3CN. The La3+ in [La-(NO3)2· [2,2,1]]+ is 11-coordinated by four oxygen atoms from two bidentate NO3- and seven heteroatoms from a [2,2,1] molecule; the La3+ ion in La (NO3)63- is coordinated to six bidentate NO3-. The La - O distances fall in the range of 2. 60-2. 70(?) and the La-N(cryp) mean distance is 2. 88(?).  相似文献   

20.
1 INTRODUCTION Tetracyanoplatinate ion often forms one-dimen- sional chain compounds, and the Pt–Pt spacings are often only 0.01~0.3 ? longer than those in Pt metal (2.78 ?). The studies of room-temperature electrical conductivities of these complexes indicate that the shorter the Pt–Pt separations in the chains are, the higher the electrical conductivity is[1~3]. Tetracyano- platinate ion may also stack with suitable planar cations into one-dimensional materials such as [Pt- (CNR)4]…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号