首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroquine base (CQ) reacts with [Ir(COD)Cl]2 and IrCl3 · 3H2O to yield of Ir(CQ)Cl(COD) (1) and Ir2Cl6(CQ) · 3H2O (2), respectively. Reaction of [Ir(COD)Cl]2 with CQ in the presence of NH4PF6 leaded to [Ir(CQ)(Solv)2]PF6 (3). The three new iridium–CQ complexes were characterized by a combination of elemental analysis, IR and NMR spectroscopies and evaluated in vitro against Plasmodium beghei. Comparison of the IC50 values obtained with the experimental compounds with that determined for chloroquine diphosphate indicated a higher activity for complex 2, while complexes 1 and 3 showed a similar and lower activity, respectively.  相似文献   

2.
Three complexes containing 2-pyrazinecarboxylate (pzca–), including [Ni(pzca)2(H2O)2], [Co(pzca)2(H2O)2], and [Cu(pzca)2(H2O)2], have been synthesized and characterized using physico-chemical and spectroscopic methods. Furthermore, the structure of each complex was determined by single-crystal X-ray diffraction. All three complexes have an octahedral geometry, where the metal ion chelated by two carboxylate oxygens, two nitrogen atoms belonging to pyrazinic acid molecules, and two oxygen atoms of two water molecules. The catalytic activities of these complex-es were also investigated in the green synthesis of 2H-indazolo[2,1-b]phthalazine-triones by the reaction of hydrazine hydrate with an arylaldehyde, phthalic anhydride, and dimedone in acetic acid.  相似文献   

3.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

4.
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the type Na4[ML(H2O)2] of the ligand, 3,3′-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresol sulphonphthalein (Xylenol Orange, Na4H2L), have been synthesized and characterized by different physico-chemical (elemental analyses, solubility, electrolytic conductances, magnetic susceptibility measurements) and spectral (u.v.-vis, i.r., e.s.r., and powder X-ray diffraction) techniques for their structure determination. The data suggest 1?:?1 (M?:?L) compositions and octahedral geometries around M(II) except for Cu(II). Antifungal activity of the complexes measured against ten fungi show significant activity against Alternaria brassicicola, Alternaria solanai, Cercospora species and Helminthosporium oryzae and moderate antifungal activity against Curvularia species, Curvularia lunata, Curvularia penniseti, Colletotrichum capsici, Aspergillus niger, Aspergillus flavus Erysiphae pisi and Fusarium udum fungi.  相似文献   

5.
Neutral complexes of Cu(II), Ni(II), Co(II), and Zn(II) have been synthesized from the oxamide-based ligand derived from leucine and diethyloxalate. The structural features have been deduced from their microanalytical, IR, UV/Vis, mass, 1H and 13C NMR spectral data. The Co(II) and Ni(II) chelates have octahedral geometries and the Cu(II) chelate is a square-pyramidal geometry. The non-electrolytic and monomeric nature of the complexes is shown by their magnetic susceptibility and low conductance data. The biological activities of the ligand and its metal chelates against gram-positive and negative bacteria and fungi are also reported. All the compounds are antimicrobially active and show higher activity than the free ligand.  相似文献   

6.
The complexes cis-bis(N-furoyl-N′,N′-diethylthioureato-k 2O,S)nickel(II) and cis-bis(N-furoyl-N′,N′-diethylthioureato-k 2O,S)copper(II) were prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complexes were characterized by IR, 1H-NMR, 13C-NMR, and single-crystal X-ray diffraction. Both complexes show two furoylthiourea ligands bonded to metal to form a four-coordinate complex with square-planar geometry. The antifungal activity of the prepared complexes was studied against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides, responsible for important plant diseases.  相似文献   

7.
A Schiff base ligands, N-{(1E,2E)-3-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}-1,10-phenanthrolin-5-amine(mpa) and (1E,2E)-3-[4-(dimethylamino)phenyl]acrylaldehyde9H-fluoren-9-ylidenehydrazone(mfh), have been synthesized from the reaction of 4,5-diazafluorenone-9-hydrazone and 5-amino-1,10-phenanthroline with 4-(dimethylamino)cinnamaldehyde. The Co(II) and Ru(II) complexes of the ligands were prepared and characterized. The metal-to-ligand ratio of the Co(II) complex was found to be 2: 1 and that of the Ru(II) complex was found to be 1: 1. The ligands and complexes have been characterized by FTIR, UV-visible, 1H NMR and fluorescence spectra, as well as, elemental analyses, TGA-DSC-DTG and mass spectra.  相似文献   

8.
Complexes of Co(II), Ni(II), Cu(II), and Zn(II) with N,N′-(aldose)2–thiocarbohydrazide (LH2) were synthesized, isolated as solid products and characterized by analytical means as well as by spectral techniques, FTIR, 1H NMR, EPR, UV spectroscopy, and CD. All the metal ions formed M[LH]X complexes. Molar conductance values in DMF indicate non-electrolytic complexes. In DMSO with tetramethylammonium chloride supporting electrolyte, the copper complex displays irreversible cyclic voltammetric responses with E p near ?0.621 and 0.461 V versus Ag/AgCl at scan rate of 0.1 V s?1. Probable structures for the complexes are proposed.  相似文献   

9.
The new complexes M(LH)2 (M = Pd,Pt), ML(M = Pd,Cu) and ML · H2O (M = Ni,Zn), where LH2 = N,N′-dimethylmonothio-oxamide, have been prepared. The complexes were characterized by metal analyses, thermal methods and spectral (i.r., Raman, u.v.—vis.) studies. The vibrational analyses of the complexes are given using NH/ND, CH3/CD3 and metal isotopic substitutions. The Ni(II), Pd(II), Pt(II) and Cu(II) compounds are square planar. The monoanion LH shows a chelated bidentate S,O-coordination, while the doubly deprotonated L2− acts as a bridging S,N/N,O-tetradentate ligand giving polymeric structures.  相似文献   

10.
Research on Chemical Intermediates - A covalently cross-linked graphene oxide (GO) catalyst was prepared by a cross-linking process using nucleophilic reaction of copper(II)‐coordinated...  相似文献   

11.
Transition Metal Chemistry - Two copper(II) complexes with ligands derived from β-amino acids, 2-(1-aminocyclohexyl)acetic acid L1 and 2-(1-amino-4-(tert-butyl)cyclohexyl)acetic acid L2, were...  相似文献   

12.
A novel tetradentate, N2O2-type Schiff base, synthesized from 1,2-bis-(o-aminophenoxy)ethane and 2-hydroxynaphthalin-1-carbaldehyde, forms stable complexes with transition metal ions such as Cu(II), Ni(II), VO(IV) and Zn(II) in DMF. Microanalytical data, elemental analyses, magnetic measurements, 1H NMR, UV, visible and IR-spectra as well as conductance measurements were used to confirm the structures.  相似文献   

13.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

14.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

15.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

16.
The zinc(II), copper(II), nickel(II), and cobalt(II) complexes of Schiff bases, obtained by the condensation of cefixime with furyl-2-carboxaldehyde, thiophene-2-carboxaldehyde, salicylaldehyde, pyrrol-2-carboxaldehyde, and 3-hydroxynaphthalene-2-carboxaldehyde, were synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR, and electronic spectral measurements. Analytical data and electrical conductivity measurements indicated the formation of M?:?L (1?:?2) complexes, [M(L)2(H2O)2] or [M(L)2(H2O)2]Cl2 [where M?=?Zn(II), Cu(II), Ni(II), and Co(II)] in which ligands are bidentate via azomethine-N and deprotonated-O of salicyl and naphthyl, furanyl-O, thienyl-S, and deprotonated pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral complexes. The synthesized ligands, along with their metal complexes, were screened for their antibacterial activity against different bacterial strains. The studies show the metal complexes to be more active against one or more species as compared to the uncomplexed ligands.  相似文献   

17.
Template condensation between o-phthalaldehyde and 3,4-diaminotoluene resulted in mononuclear 16-membered tetraimine macrocyclic complexes, [MLCl2] [M?=?Co(II), Ni(II), Cu(II), and Zn(II)]. The proposed stoichiometry and the nature of the complexes have been deduced from elemental analyses, mass spectra, and molar conductance data. The macrocyclic framework has been inferred from ν(C=N) and ν(M–N) bands in the IR spectra and the resonances observed in 1H and 13C-NMR spectra. Octahedral geometry has been assigned for all these complexes on the basis of position of the bands in electronic spectra and magnetic moment data; distorted octahedral geometry has been assigned for the Cu(II) complex on the basis of EPR data. The low-conductivity data of all the complexes suggest their non-ionic nature. Interaction of these complexes with calf-thymus DNA (CT DNA) has been examined with fluorescence quenching experiments, which show that the complexes are avid binders of CT DNA.  相似文献   

18.
N-N′-tetracarboxydiethyloxamide (hereafter abbreviated as H6L) was prepared by using L-aspartic acid and diethyl oxalate (DEO). A series of binuclear complexes of divalent metal chlorides viz. Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) with H6L have been prepared. Spectral studies (IR, UV and NMR) magnetic susceptibility, elemental analysis and molar conductance measurements confirm the formation of binuclear complexes, [M2H2L]/[M2H2L?·?4H2O]. Electronic absorption spectra and magnetic susceptibilities suggest square-planar stereochemistry for Cu(II) and tetrahedral for Zn(II) complexes. Mn(II), Co(II), and Ni(II) coordinate two molecules of water and consequently show octahedral geometry. The in vitro antimicrobial activity of the synthesized compounds is discussed against bacterial strains such as S. aureus, S. epididermis, K. pneumonia, S. typhi, P. aerugenosa, and B. subtilis A. brasilense. The metal complexes show higher activity against all the microorganisms than the ligand.  相似文献   

19.
The reactions of eaq, CH2OH·, (CH3)2COH·, CO, OH· and N3· radicals with peroxo terpyridine complexes of Cu(II), Zn(II), and Cu(II) Zn(II) in aqueous solution were investigated by pulse radiolysis. The primary products from the reduction and oxidation of the macrocyclic complexes were assigned a radical nature by comparing their optical spectra with those of Cu(I), Zn(I), and Cu(III) species. Such metal–ligand radical products undergo disproportionation that does not lead to the formation of Cu(0) or colloidal copper. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 92–98, 2000  相似文献   

20.
A set of new diastereopure unsymmetrical α-diimine ligands 2a-d derived from methylglyoxal and optically pure primary amines 1a-d afforded the new chiral Pd(II)-complexes (S,S)-3a, (S,S)-3b, (S,S)-3c, and (1S, 2S, 3S, 5R)-3d. All compounds have been characterized by IR, 1H, and 13C NMR spectroscopies along with MS-FAB+ spectrometry. The crystal and molecular structure for the complexes 3a, 3b and 3d have been fully confirmed by single-crystal X-ray studies. Likewise, complexes 3a-d have also been screened for their in vitro cytotoxicity against different classes of cancer: leukemia (K-562 CML), colon cancer (HCT-15), human breast adenocarcinoma (MCF-7), central nervous system (U-251 Glio) and prostate cancer (PC-3) cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号