首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热力学排气系统(TVS)技术是一种广泛采用而有效的航天低温推进剂高效贮存手段。结合热力学排气系统,针对常用的液氮、液氧、液氢等低温推进剂进行了节流制冷性能初步分析和计算,为实现采用TVS系统进行低温推进剂的高效贮存奠定了一定基础。  相似文献   

2.
以低温贮箱压力控制为目标,建立了热力学排气系统(TVS)和贮箱内流体流动及气液相变过程的数学模型。以18.09m~3低温贮箱在地面工况充注率75%、漏热量0.76W/m~2为例,计算了不同贮存工质(液氢、液氮、液氧)下贮箱自增压过程及开启TVS后对贮箱压力控制的效果。结果表明,相同漏热率下液氢贮箱的气枕升压速率远大于相同充注率下的液氮和液氧贮箱升压速率;TVS运行后三种工质贮箱压力均可有效地控制在165.5~172.4kPa范围内。对比了不同工质热力学排气系统的运行周期、运行时间及排气量等关键参数,同时还分析了贮箱内液体的温度变化规律。  相似文献   

3.
介绍了热力学排气系统(TVS)对于未来深空探测事业的重要意义,总结了TVS技术的研究进展。针对套管式换热器,以换热量、换热器内外管出口温差和排气侧压力损失为评价指标,进行多组变工况计算,给出了优化换热器性能的思路与方向。通过一维计算得到了TVS对低温液氢贮箱压力控制的作用效果,计算结果表明:地面工况下TVS能有效控制贮箱压力在设定范围内变化;而在微重力条件下,壁面滞留的液体导致贮箱压力低于控制下限,压力循环周期明显增长。  相似文献   

4.
低温液体蒸发气再液化系统漏热引起的储罐内低温液体蒸发气(BOG)蒸发速率和压力有效控制是试验正常进行的关键,通过对储罐内低温液体的热响应分析,建立罐内低温液体和BOG计算模型,对制冷机关闭情况下储罐内压力(BOG压力)和BOG蒸发速率随储存时间的变化过程进行数值计算。结果表明:随着储存时间的增大,储罐内压力升高、压力增长速率加快、BOG蒸发速率减小;液氮和BOG温度升高对储罐内压力升高速率具有显著的影响;制冷机可以实现对罐内压力和BOG量的调节控制。为制冷机控制方案的制定和后续开展低温液体BOG再液化试验研究提供理论基础。  相似文献   

5.
热力排气系统(TVS)可在微重力环境下实现低温贮箱压力的有效控制,在低温推进剂在轨贮存技术中具有应用前景。为了深入研究热力排气系统、被动绝热、蒸汽冷却屏等多项技术的耦合运行规律,设计并搭建了以液氮为模拟介质的在轨贮存技术地面多功能原理验证试验系统。本文将通过净蒸发量测试、消除热分层测试及控压实验测试来介绍该系统的热力排气功能的实现情况。分析低温贮箱的自增压过程特性,获得贮箱热分层规律;在单个热力排气控压周期内检验TVS消除热分层和消降压力的效果;对比分析基于压力反馈和基于压力+液体温度反馈这两种控制策略的控压特点,从介质损失率的角度评估两种控制策略的优劣。结果表明,贮箱热分层主要出现在气枕区的轴向上,形成于气枕的等容加热期,而热力排气系统能有效消除热分层并消降贮箱压力;压力反馈策略能够通过节流换热的方式减缓液体温度上升,但是贮存流体损失相对较多;而压力加温度反馈策略可实现短期贮存流体零损失。  相似文献   

6.
液化气推进技术是微小伴随卫星在轨飞行采用的一种新型推进技术。微小伴星空间调姿、变轨过程需精确的推力控制,因此必须了解卫星推进系统中推进剂的形位分布。本文理论分析了空间微重力环境下液化气推进剂气/液界面的形位分布及变化,并通过落塔实验验证了微重力环境下有效控制液体推进剂的管理方法。  相似文献   

7.
文中介绍了液化天然气汽车燃料罐的无气体排放加注的过程,分析了过程实现的条件及输送到燃料罐后低温液体的饱和温度和压力的变化,提出了对燃料罐和加注站在设备结构、燃料储存和输送压力方面的要求,可作为设计与制造液化天然气汽车燃料储罐及相应加注装置的参考。  相似文献   

8.
对采用热力学排气技术的低温液体高效贮存系统进行了结构和原理介绍,据此对低温贮箱的压力控制运行方式进行了分析。运行方式主要分为排气模式、混合模式和双重模式,对每种运行模式从结构和运行原理进行了介绍,并从缺陷和优点两方面进行了总结。对混合模式和双重模式下的压力控制技术,结合了实验案例进行剖析。通常会根据贮箱内压力等参数变化而采取几种模式的组合开展实验。  相似文献   

9.
《低温与超导》2021,49(7):79-83
通过进行低温储罐静置试验,研究不同液位条件下罐内压力随时间的变化,根据低温介质物性方程和储罐容积公式,计算得到不同液位条件下储罐日蒸发率。结果表明,静置过程中罐内压力随时间呈线性变化,压力上升速率随液位降低而逐渐增加。日蒸发率随时间动态变化,储罐液位越低日蒸发率越大。当储罐液位从85%降低至12%时,压力上升速率变为原来的3倍,日蒸发率增加40多倍。储罐低液位存储时,压力上升速度明显增加,无损储存时间大幅减小,不利于液氮的长期静置存储。  相似文献   

10.
低温推进剂长期在轨储存技术是制约航空航天探测不断深入的关键技术之一。基于变密度多层绝热的组合型绝热(SOFI/VD-MLI)技术是泡沫塑料绝热与变密度多层绝热相结合的一种新型绝热方式,其绝热效果好、质量轻,在飞行器地面发射阶段和空间在轨阶段均能发挥良好的绝热作用,广泛用于航天低温推进剂的存储。文中从国内外研究现状、结构原理等方面介绍SOFI/VD-MLI技术,重点分析SOFI/VD-MLI技术的优点和未来研究方向。  相似文献   

11.
低温储罐在充液后内罐因温度下降而冷缩,夹层空间增大,同时夹层温度也将下降,综合作用使夹层真空度升高及绝对压力下降,这对低温容器绝热是有利的。为了计算充液后夹层压力的大小,研究了低温容器充液后内罐冷缩及夹层温度变化情况,给出了夹层压力的计算公式。实例计算表明充液后夹层压力下降显著。  相似文献   

12.
ZBO存储低温储箱内的压力变化模拟分析   总被引:1,自引:0,他引:1  
低温推进剂在存储过程中,由于和周围环境存在较大的温差,热量漏入储箱后引起的低温推进剂蒸发不可避免造成储箱内的温度和压力的升高。当压力超过一定值,需要定期排空,从而造成低温推进剂损失。ZBO存储技术通过低温制冷机移出漏入储箱内的热量,可以有效地避免低温推进剂的蒸发损失。对储箱的漏热量进行了计算,并且对ZBO存储过程中储箱内的温度和压力变化过程进行了模拟。  相似文献   

13.
为研究吨级低温液氙在静置存储过程中的压力与温度变化情况,选用液氩作为介质代替昂贵的液氙进行了实验测试,并使用三区模型进行模拟计算。模拟了在容积为6.7 m3的简化低温储罐模型中,将初始液相温度为87 K,压力为0.1 MPa的液氩静置9天,储罐内压力、温度的变化情况。结果显示,随着外部热量的进入,储罐压力随时间逐渐上升但并非线性增长,压力的变化率逐渐增大。为低温液氙、液氩的无损存储研究提供了参考。  相似文献   

14.
LNG是一种易燃易爆的低温气体,通常采用无损储存。由于外界漏热,储罐内压力会不断上升,此升压速率对无损储存的安全有着重要的影响。文中建立了低温储罐自增压以及温度分层实验装置,对罐内的温度分层及此时的升压过程进行了实验研究。  相似文献   

15.
液体甲烷是易燃易爆的低温液体,在封闭容器中压力的上升是它安全储存所面临的关键问题。文中列出了无损储存计算用模型,并以40m~3液化天然气储罐为研究对象计算了甲烷的无损储存规律,得到了0.1518MPa和标准大气压下环境温度分别为30℃,50℃和80℃下的无损储存规律,以及液体甲烷安全无损储存天数。  相似文献   

16.
为研究低温液体吸热产生蒸发气(Boil-Off Gas,BOG)的动态过程,寻求合理调控低温液体压力和温度的方法,搭建了一套低温液体BOG再液化试验系统。以液氮为工质对120L高真空变密度多层绝热储罐进行了压力、温度及蒸发率测试试验,分析了以上参数与时间的变化规律,计算了储罐静态蒸发率与漏热量。结果表明:储罐压力随时间增加而逐渐上升,在480min之前压力上升速率较快,为10.9Pa/s,之后上升速率逐渐减小。从液相到气相的温度依次升高,液相内部的温度相差较小,约为1.2℃;随时间的增加,液相和气液分界面的温度逐渐升高,气相的温度逐渐降低,480min后达到相对稳定的状态。初始充装率为0.7时,自然蒸发的BOG流量随时间增加逐渐减小;经计算,储罐静态蒸发率为2.04%/d,漏热量为4.1W。试验结果为后续开展低温液体BOG再液化研究提供了相关依据。  相似文献   

17.
王兵 《应用声学》2017,25(6):52-52
近年来,随着我国互联网云计算的不断发展,云计算技术被应用于诸多领域。针对传统石油化工领域中储罐液仪表存在的罐内压力检测精准度差、温度感应灵敏度低与储罐液状态数据分析面窄等问题,提出云计算下石油化工罐区储罐液仪表设计。通过大数据运算核心进行框架构建,在此基础上,采用PCJD气流密度差算法、微感热源运算单元与数据流云算技术,对传统储罐液仪表进行设计改进,从问题的根源进行针对性解决。仿真对比试验证明,提出的云计算下石油化工罐区储罐液仪表设计,具有罐内液压力数据反馈精准度高,温度感应灵敏度高、储罐液综合数据分析速度快、数据分析完整度高等优点。  相似文献   

18.
基于热响应法的航天器推进剂质量测量热模型   总被引:1,自引:0,他引:1  
本文以热响应法测量航天器微重力条件下贮箱推进剂剩余质量为背景,建立了航天器贮箱内外热环境耦合作用下的整体热分析模型,通过将航天器贮箱外部热环境视为第二类浮动热边界条件,实现贮箱气液两相分布下的热分析解耦计算,为热响应法提供精确的温度场计算方法。采用该方法,针对热响应法测量微重力条件下某航天器贮箱内部推进剂质量所需的温度场分布,通过数值仿真获得了空间在轨阶段,热响应法加热工作时贮箱内外热环境整体耦合下的温度场分布,并依据特定检测点的瞬态温度变化,反演得到了剩余推进剂的质量。研究发现采用热响应法测量推进剂质量时,贮箱温度场不仅受贮箱内部加热影响,在轨外部热环境也会明显影响贮箱壁面温度的均匀性。  相似文献   

19.
针对低温工况下电动汽车普通热泵空调系统压缩机排气温度高,系统制热性能衰减严重,甚至无法正常工作等问题,设计了一种混气型纯电动汽车热泵空调系统。基于热力学第一定律和各部件之间的耦合特性建立该系统的数学模型,用该模型对系统的主要性能参数进行模拟计算,与实验结果相比具有较好的吻合性。并对模拟结果进行研究分析,从分析结果可以看出:该系统能够有效的解决非混气型电动汽车热泵系统低温工况下排气温度过高和制热性能衰减等问题。  相似文献   

20.
低温液体在储罐内的无损储存时间是低温储运过程中非常值得关心的一个问题,而漏热量的准确确定是预测无损储存时间的关键因素。使用了大空间自然对流换热模型,对气相空间的漏热进行了研究,在此基础上,提出新的无量纲数G l。并在总结分析的基础上给出了适合工程应用的气相漏热计算公式和气相漏热实用估算表。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号