首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A PVC-based membrane electrode for lead ions based on hexathia-18-crown-6-tetraone as membrane carrier was prepared. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lead concentration range from 1.0 x 10(-6) to 8.0 x 10(-3) M at 25 degrees C, and was found to be very selective, precise and usable within the pH range 3.0-6.0. The electrode was successfully used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

2.
New Plastic membrane ion-selective electrode for buspirone hydrochloride based on buspironium tetraphenylborate was prepared. The electrode exhibited mean slope of calibration graph of 58.4 mV per decade of BusCl concentration at 25 degrees C. The electrode can be used within the concentration range 6.3 x 10(-5) - 10(-2) M BusCl at a pH range of 2.5-7.0. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal temperature coefficient of the electrode, amounting to 0.00056 V degrees C(-1). The electrode showed a very good selectivity for BusCl with respect to a number of inorganic cations, sugars and amino acids. The electrode was applied to the potentiometric determination of the buspirone ion and its pharmaceutical preparation under batch and flow injection conditions. Also, buspirone was determined by conductimetric titrations. Graphite rod, copper and silver coated wire electrodes were prepared and characterized as sensors for the drug under investigation.  相似文献   

3.
A new oxymetazoline (OM) ion-selective PVC membrane electrode based on the ion associate of OM with phosphotungstic acid was prepared. The electrode exhibits a linear response with a mean calibration graph slope of 57.16 mV decade(-1) at 25 degrees C within the concentration range of 1.96 x 10(-5) - 1 x 10(-2) M OMCl. The change in the pH within the range of 1.0 - 9.4 did not affect the electrode performance. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode (-0.001233 V). The electrode showed a very good selectivity for OM with respect to a large number of inorganic cations and compounds. The standard addition method and potentiometric titration were applied to the determination of (OM) with RSD not exceeding 1.19%.  相似文献   

4.
Central composite design (CCD) and response surface methodology (RSM) were developed as experimental strategies for modeling and optimization of the influence of some variables on the performance of a new PVC membrane triiodide ion-selective electrode. This triiodide sensor is based on triiodide-clozapine ion-pair complexation. PVC, plasticizers, ion-pair amounts and pH were investigated as four variables to build a model to achieve the best Nernstian slope (59.9 mV) as response. The electrode is prepared by incorporating the ion-exchanger in PVC matrix plasticized with 2-nitrophenyl octal ether, which is directly coated on the surface of a graphite electrode. The influence of foreign ions on the electrode performance was also investigated. The optimized membranes demonstrate Nernstian response for triiodide ions over a wide linear range from 5.0 x 10(-6) to 1.0 x 10(-2)mol L(-1) with a limit of detection 2.0 x 10(-6) mol L(-1) at 25 degrees C. The electrodes could be used over a wide pH range 4-8, and have the advantages of easy to prepare, good selectivity and fast response time, long lifetime (over 3 months) and small interferences from hydrogen ion. The proposed electrode was successfully used as indicator electrode in potentiometric titration of triiodide ions and ascorbic acid.  相似文献   

5.
Arvand M  Asadollahzadeh SA 《Talanta》2008,75(4):1046-1054
A novel ion-selective PVC membrane sensor for Al(III) ions based on 6-(4-nitrophenyl)-2-phenyl-4-(thiophen-2-yl)-3,5-diaza-bicyclo[3.1.0]hex-2-ene (NTDH) as a new ionophore has been prepared and studied. The electrode exhibit a good response for aluminum ion over concentration range of 1.0x10(-6) to 1.0x10(-1) mol L(-1) with a Nernstian slope of 19.6+/-0.4 mV per decade and low detection limit of 6.3x10(-7) mol L(-1). The best performance was obtained with membrane composition 30% poly(vinyl chloride), 62% acetophenone, 5% oleic acid, 3% ionophore and 2 ml tetrahydrofuran. NTDH-based electrode was suitable for aqueous solutions of pH 3. It has relatively fast response time (approximately 10 s) and can be used at least for 3 months without any considerable divergence in potentials. The proposed membrane electrode revealed good selectivity for Al(III) ions over a wide variety of other cations. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. The formation constant and stoichiometry ratio of ionophore-Al(III) complex were calculated at 25 degrees C by using segmented sandwich membrane method. It was used in non-aqueous solvents and also as indicator electrode in potentiometric determination of Al(III) ions in some real samples.  相似文献   

6.
[5,10,15,20-Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]Mn(III) acetate (MnTDPAc) was applied as an ionophore for an iodide-selective PVC membrane electrode. The influences of the membrane composition, pH of the test solution and foreign ions on the electrode performance were investigated. The sensor exhibited not only excellent selectivity to iodide ion compared to Cl- and lipophilic anions such as ClO4- and salicylate, but also a Nernstian response with a slope of -59.4 +/- 1.2 mV per decade for iodide ions over a wide concentration range from 1.0 x 10(-2) to 7.5 x 10(-6) M at 25 degrees C. The potentiometric response was independent of the pH of the solution in the pH range of 2 - 8. The electrode could be used for at least 2 months without any considerable divergence in the potential. Good selectivity for iodide ion, a very short response time, simple preparation and relatively long-term stability were the silent characteristics of this electrode. It was successfully used as an indicator electrode in the potentiometric titration of iodide ions, and also in the determination of iodide from seawater samples and drug formulations.  相似文献   

7.
Abbas MN  Mostafa GA  Homoda AM 《Talanta》2001,55(3):647-656
A novel PVC membrane electrode selective for the determination of pentachlorophenolate (PCP) ion based on 2,3,5-triphenyl-2H-tetrazolium (TPT) pentachlorophenolate ion pair as an electroactive material is described. The electrode shows a linear response for PCP ion over the concentration range of 6x10(-5) to 1x10(-2) M with lower detection limit of 4x10(-5) M at 25 degrees C. The electrode posses a Nernstian slope of -55.0+/-1.0 mV/decade and a fast potential response of 45 s, which is almost constant over a pH range of 5.5-10.5. Selectivity coefficient data for some common ions show negligible interference, however, 2,4,6-trichlorophenolate and cetylpyridinium ions interfere. An average recovery of 96.2% with relative standard deviation of 2.3% has been achieved for the determination of 75.0 ppm PCP in wastewater samples. The determination of PCP in soil and wood samples gave results that compare favorably with those obtained by gas chromatography. The electrode has been utilized as an end point indicator electrode for the determination of PCP using potentiometric titration.  相似文献   

8.
New ranitidine hydrochloride (RaCl)-selective electrodes of the conventional polymer membrane type are described. They are based on incorporation of ranitidine-tetraphenylborate (Ra-TPB) ion-pair or ranitidine-phosphotungstate (RaPT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphthalate (DOP) or dibutylphthalate (DBP). The electrodes are fully characterized in terms of the membrane composition, solution temperature, and pH. The sensors showed fast and stable responses. Nernstian response was found over the concentration range of 2.0 x 10(-5) M to 1.0 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-TPB electrode and over the range of 1.03 x 10(-5) M to 1.00 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-PT electrode for batch and FIA systems, respectively. The electrodes exhibit good selectivity for RaCl with respect to a large number of common ions, sugars, amino acids, and components other than ranitidine hydrochloride of the investigated mixed drugs. The electrodes have been applied to the potentiometric determination of RaCl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions with a lower detection limit of 1.26 x 10(-5) M and 5.62 x 10(-6) M at 25 +/- 1 degrees C. An average recovery of 100.91% and 100.42% with a relative standard deviation of 0.72% and 0.53% has been achieved.  相似文献   

9.
A PVC membrane electrode for lead ions based on phenyl disulfide as the membrane carrier was developed. The electrode exhibits a good Nernstian slope of 29.3 +/- 0.7 mV/decade and a linear range of 2.0 x 10(-6)-1.0 x 10(-2) M for Pb(NO3)2. The limit of detection is 1.2 x 10(-6) M. It has a response time of 45 s and can be used for at least fifty days without any divergence in potential. The proposed membrane sensor revealed high selectivity for Pb2+ over a wide variety of other metal ions and could be used in the pH range of 3.5-6.3. The electrode was used as an indicator electrode in potentiometric titration of lead ions.  相似文献   

10.
The kinetics of thermal decomposition of 4-carboxyl-2,6-dinitrobenzenediazonium ion (CDNBD), an arenediazonium ion newly developed as a derivatizing reagent for drug analysis, are described. The arenediazonium ion, in an optimized concentrated sulfuric acid/orthophosphoric acid medium, was incubated for various time intervals at 30 degrees, 45 degrees, 55 degrees , 65 degrees , 75 degrees, and 85 degrees C. The amount of ion left after each time interval was quantified selectively by colorimetric assay at 490 nm, using mefenamic acid as a model diazo-coupling component. The rate constants for the decomposition were determined graphically. An Arrhenius plot was used to delineate the dependence of the rate constant on temperature and to predict the half-life at 25 degrees C and lower temperatures. The diazonium ion decomposed by first-order kinetics. The rate constants of decomposition, which increased progressively with temperature, were 3.18 +/- 0.41 x 10(-5), 1.19 +/- 0.07 x 10(-4), 4.87 +/- 0.15 x 10(-4), 12.88 +/- 0.73 x 10(-4), and 21.32 +/- 2.74 x 10(-4) (s(-1)) with corresponding half-lives of 363, 97.06, 23.72, 8.97, and 5.42 min at 30 degrees, 45 degrees, 55 degrees, 65 degrees, and 75 degrees C, respectively. CDNBD is highly stable in concentrated acid medium, with half-life values of about 10 h, 10 days, and 7.3 months at 25 degrees, 0 degrees, and -20 degrees C, respectively. The reagent stability profile shows that it could be readily adapted for routine applications in instrumental chemical analysis.  相似文献   

11.
Chamorro PR  Díaz RC 《Talanta》1993,40(9):1461-1464
The construction and performance characteristics of a double-membrane ephedrine selective electrode are described. The electrode is based on the use of an internal conducting membrane made of tetrabutylammonium bromide and another external electroactive membrane containing the ionic pair ephedrine-tetraphenylborate in a poly (vinyl chloride) resin (with some plasticizers incorporated) as an inert matrix. The ephedrine electrode exhibits linear Nernstian response within the range 10(-2)-5 x 10(-5)M of ephedrine, with a slope of 58.2 +/- 0.5 mV decade(-1) at 25 +/- 0.2 degrees . The detection limit is 10(-4.5)M. The reproducibility (coefficient of variation) was 0.54% (n = 10 determinations) and the stability of its potential is 2.3 mV/24 h. The selectivity coefficients for 15 ions were calculated. The electrode was applied to the determination of ephedrine in some pharmaceutical preparations with satisfactory results.  相似文献   

12.
The construction and general performance of novel potentiometric membrane ion selective electrodes for determination of papaverine hydrochloride has been described. They are based on the formation of the ion association complexes of papaverine (PA) with tetraphenylborate (TPB)(I) or tetrathiocyanate (TTC)(II) counter anions as electro-active material dispersed in a PVC matrix. The electrodes show fast, stable, near Nernstian response for 1 x 10(-2) to 6 x 10(-5) M and 1 x 10(-2) to 1 x 10(-5) M for PA-TPB and PA-TTC respectively at 25 degrees C over the pH range of 3-5.0 with a cationic slope of approximately 56.5 +/- 0.5 mV/decade for both sensors respectively. The lower detection limit is 4 x 10(-5) and 8 x 10(-6) M for PA- I and PA-II respectively with fast response time ranging from 20-45 sec. Selectivity coefficients for PA relative to a number of interfering substances were investigated. There is a negligible interference from the studied cations, anions, and pharmaceutical excipients. The determination of 4.0- 3000.0 microg/ml of PA in aqueous solutions shows an average recovery of 99.1% and a mean relative standard deviation of 1.4 at 100microg/ml. The direct determination of PA in some formulations (Vasorin injection) gave results that compare favorably with those obtained using the British Pharmacopoeia method. Potentiometric titration of PA with sodium tetraphenylborate and potassium thiocyanate as titrants utilizing the papaverine electrode as an end point indicator electrode has been carried out.  相似文献   

13.
Triprolidine (Trip) ion selective electrodes of three types: the conventional polymer membrane (I), graphite coated electrode (II) and carbon paste electrode (III), have been prepared, based on the ion pair of triprolidine hydrochloride with sodium tetraphenylborate. The electrodes exhibit a linear response with a mean calibration graph slope of 56.12, 55.00 and 54.32 mV decade(-1) at 25 degrees C for I, II and III, respectively, within the concentration ranges 1.96 x 10(-5) - 1.00 x 10(-2) M for I and 3.84 x 10(-5) - 1.00 x 10(-2) M for II and III. The detection limits are 1.13+/-0.13 x 10(-5), 1.70+/-0.06 x 10(-5) and 1.78+/-0.05 x 10(-5) M for the three electrodes, respectively. The change of pH within the ranges 4.85 - 8.75 and 4.70 - 8.50 for I and III, respectively, did not affect the electrode performance. The standard electrode potentials were determined at different temperatures and were used to calculate the isothermal coefficient of the electrode. The electrodes showed a very good selectivity for Trip with respect to a large number of inorganic cations and compounds. The standard addition method was applied to the determination of TripCl in pure solution, pharmaceutical preparations, and urine samples.  相似文献   

14.
A novel PVC membrane electrode for the determination of scopolamine ion based on the formation of an ion-association complex of scopolamine with the phosphotungstate counter anion as an electroactive material dispersed in a PVC matrix is described. The sensor shows a fast, stable, near-Nenstian response for 1 x 10(-2) mol dm(-3) to 1 x 10(-6) mol dm(-3) scopolamine at 25 degrees C over the pH range of 3 - 7 with a cationic slope of 54.5 +/- 0.5 mV/decade. The lower detection limit is 8 x 10(-7) mol dm(-3) and the response time is 15 -45 s. The selectivity coefficients for scopolamine relative to the number of interfering substances were investigated. There was negligible interference from the studied cations, anions, and pharmaceutical excipients. The determination of scopolamine in aqueous solution shows an average recovery of 100.0% and a mean relative standard deviation (RSD) of 1.5% at 500 microg/cm3. The direct determination of scopolamine in some formulations (scopolamine injection and eye drops) gave results that compare favorably with those obtained by the United State of Pharmacopoeia method. Potentiometric titration of scopolamine with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the developed scopolamine electrode as an end point indicator electrode.  相似文献   

15.
A new carbon paste electrode (CPE) for the determination of iodide ion based on a cetyltrimethylammonium iodide (CTMAI) ion pair as an electroactive material is described. The electrode shows a linear response for iodide ion over the concentration range of 4 x 10(-5) M to 1 x 10(-1) M with a lower detection limit of 4 x 10(-5) M at 25 degrees C. The electrode has a Nemstian slope of -55.0 +/- 0.4 mV/decade and a fast potential response of 45 s, which is almost constant over a pH range of 5.0 - 9.0. Selectivity coefficient data of the CTMAI-CPE for some common ions show negligible interference, and the electrode has high selectivity towards the iodide ion. An average recovery of 101.83% with a relative standard deviation of 1.53% has been achieved for the determination of iodide in Flaxedil (gallamine triethiodide) ampoules, a muscle relaxant drug. The electrode has been examined for the determination of iodide in saline water; the results were found to compare favorably with those obtained using Metrohm iodide ISE. The electrode has been utilized as an end-point indicator electrode for the determination of Hg(II) and phenylmercury(I) in their aqueous solutions using potentiometric titration with a potassium iodide standard solution.  相似文献   

16.
Novel PVC membrane electrodes for the determination of betaine ion based on the formation of betaine-tetraphenylborate (Be-TPB) and betaine-phosphotungstate (Be-PT) ion-exchangers as electroactive materials are described. The sensors show a fast, stable, near Nernstian response for 6.92 x 10(-6) to 7.94 x 10(-3) M and 1.0 x 10(-4) to 1.0 x 10(-2) M betaine hydrochloride (Be.Cl) in case of Be-TPB electrode applying batch and flow injection analysis (FIA), respectively, and 2.95 x 10(-5) to 2.26 x 10(-3) M and 3.16 x 10(-5) to 1.0 x 10(-2) M in case of Be-PT electrode for batch and FIA electrodes, respectively, at 25 degrees C over the pH range of 3.5-10 with a cationic slope of 60.2 and 59.1 mV decade(-1) and a fast potential response of < or =15 s. The lower detection limits are 7.94 x 10(-6) and 3.18 x 10(-5) M Be.Cl for Be-TPB and Be-PT electrodes, respectively. Selectivity coefficient data for some common inorganic cations, sugars, amino acids and the components other than betaine, of the mixed drug investigated show negligible interference. The electrodes have been applied to the direct potentiometric determination of betaine hydrochloride in water and in a pharmaceutical preparation under batch and FIA conditions. Potentiometric titrations of Be.Cl with NaTPB and PTA as titrants were monitored with the developed betaine electrodes as an end point indicator electrode. The determination of Be.Cl shows an average recovery of 100.8% with mean relative standard deviation of 0.61%. The effect of temperature on the electrodes was also studied.  相似文献   

17.
Badawy SS  Shoukry AF  Rizk MS  Omar MM 《Talanta》1988,35(6):487-489
A hydralazine ion-selective PVC membrane electrode based on hydralazinium tetraphenylborate has been prepared with dioctyl phthalate as plasticizer. The electrode showed linear response with a slope factor of 57.5 mV/concentration decade at 20 degrees over the concentration range from 4 x 10(-4) to 10(-1)M hydralazine. The effects, on the electrode performance, of membrane composition, pH of the test solution and the time of soaking were studied. The electrode exhibited good selectivity for hydralazine with respect to a large number of inorganic cations and organic substances of biological importance. The standard-addition method and potentiometric titrations were used to determine hydralazine concentrations in pure solutions and in a pharmaceutical preparation, with satisfactory results.  相似文献   

18.
Novel miniaturized polyurethane (PU) membrane sensors in an all-solid state graphite support were developed, electrochemically evaluated and used for the assay of thiopental drug. The thiopental (T) sensors are based on the formation of ion-association complexes of thiopental with copper(II) and cobalt(II)-bathophenanthroline (bphen) counter anions as electroactive materials dispersed in a polyurethane matrix. The sensors show a linear response for thiopental over the range of 1 x 10(-1) - 5 x 10(-5) M thiopental at 25 degrees C over the pH range 6 - 11 with anionic slopes of -28.7 and -28.3 mV decade(-1) with Cu- and Co-bphen thiopental membrane sensors, respectively. These sensors exhibit a fast response time (25 - 45 s), a low detection limit (5 x 10(-6) M), a long lifetime (7 weeks) and good stability. The selectivity coefficients for thiopental sensors relative to the number of interfering anions, were investigated. These sensors were used for the direct potentiometry of thiopental in a pharmaceutical formulation and human serum. Results with mean accuracy of 99.8 +/- 0.5% of nominal were obtained, which compare well with data obtained using spectrophotometric (UV-Vis) and British Pharmacopoeia (BP) methods.  相似文献   

19.
A novel lidocaine ion-selective electrode is prepared, characterized and used in pharmaceutical analysis. The electrode incorporates PVC-membrane with lidocaine-sulfathiazole ion pair complex. The influences of membrane composition, temperature, pH of the test solution, and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lidocaine concentration range from 1.0 ×10−5 to 1.0 × 10−1 mol L−1 with a slope of 60.1 ± 0.2 mV per decade at 25°C and was found to be very selective, precise, and usable within the pH range 5–9.5. The standard electrode potentials, E o, were determined at 10, 15, 20, 25, 30, 35 and 40°C, and used to calculate the isothermal temperature coefficient (dE o/dT=−0.0003 V °C−1) of the electrode. However, the electrode performance is significantly decreased at temperatures higher than 45°C. The electrode was successfully used for potentiometric determination of lidocaine hydrochloride in pharmaceutical products. The article is published in the original.  相似文献   

20.
Atta NF  Galal A  Mark HB  Yu T  Bishop PL 《Talanta》1998,47(4):987-999
A new potentiometric sensor electrode for sulfide based on conducting polymer films is introduced. The electrode is formed by electrochemically depositing a film of poly(3-methylthiophene) and poly(dibenzo-18-crown-6) onto an alloy substrate. Different methods were used for the electrode preparations. The alloy used has a low melting point, which allowed its use for manufacturing a microsize version of this electrode. The electrode response is stable for 3 days. The working temperature range for this electrode is between 10 and 40 degrees C. The linear dynamic range is 1.0x10(-7)-1.0x10(-2) M and measures total sulfide concentration over a range of pH from 1 to 13. The polymer electrode showed high selectivity for sulfide in the presence of many common interfering anions. The electrode is useful for the measurement of total sulfide in biological environments and can be manufactured in the micron scale. Therefore, it will be useful for the measurement within biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号