首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a spin system with both two- and four-spin exchange interactions on the triangular lattice as a possible model for the nuclear magnetism of solid 3He layers adsorbed on grafoil. The ground state is analyzed by the use of the mean-field approximation. It is shown that the four-sublattice state is favored by introduction of the fourspin exchange interaction. A possible phase transition at a finite temperature into a phase with the scalar chirality is predicted. Application of a magnetic field is shown to cause a variety of phase transitions.  相似文献   

2.
We solve the attractive Hubbard model for arbitrary interaction strengths within dynamical mean-field theory. We compute the transition temperature for superconductivity and analyze electron pairing in the normal phase. The normal state is a Fermi liquid at weak coupling and a non-Fermi-liquid state with a spin gap at strong coupling. Away from half filling, the quasiparticle weight vanishes discontinuously at the transition between the two normal states.  相似文献   

3.
The quantum phase transition in clean itinerant ferromagnets is analyzed. It is shown that soft particle-hole modes invalidate Hertz's mean-field theory for d< or =3. A renormalized mean-field theory predicts a fluctuation-induced first order transition for 1相似文献   

4.
J Qin  X Jian  Q Gu 《J Phys Condens Matter》2012,24(36):366007
The magnetic properties of a charged spin-1 Bose gas with ferromagnetic interactions are investigated within mean-field theory. It is shown that a competition between paramagnetism, diamagnetism and ferromagnetism exists in this system. It is shown that diamagnetism, being concerned with spontaneous magnetization, cannot exceed ferromagnetism in a very weak magnetic field. The critical value of reduced ferromagnetic coupling of the paramagnetic phase to ferromagnetic phase transition [Formula: see text] increases with increasing temperature. The Landé-factor g is introduced to describe the strength of the paramagnetic effect which comes from the spin degree of freedom. The magnetization density [Formula: see text] increases monotonically with g for fixed reduced ferromagnetic coupling [Formula: see text] as [Formula: see text]. In a weak magnetic field, ferromagnetism makes an immense contribution to the magnetization density. On the other hand, at a high magnetic field, the diamagnetism tends to saturate. Evidence for condensation can be seen in the magnetization density at a weak magnetic field.  相似文献   

5.
6.
We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka–Volterra type interactions defined on a d-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka–Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.  相似文献   

7.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

8.
Social influence in small—world networks   总被引:1,自引:0,他引:1       下载免费PDF全文
孙锴  毛晓明  欧阳颀 《中国物理》2002,11(12):1280-1285
We report on our numerical studies of the Axelrod model for social influence in small-world networks.Our simulation results show that the topology of the network has a crucial effect on the evolution of cultures .As the randomness of the network increases,the system undergoes a transition from a highly fragmented phase to a uniform phase.we also find that the power-law distribution at the transition point,reported by castellano et al,is not a critical phenomenon;it exists not only at the onset of transition but also for almost any control parameters,All these power-law distributions are stable against pertubations.A mean-field theory is developed to explain these phenomena.  相似文献   

9.
We study the (spin-)Peierls transition in quasione- dimensional disordered systems, treating the lattice classically. The role of kinks, induced thermally and by disorder, is emphasized. For weak interchain interaction the kinks destroy the coherence between different chains at a temperature significantly lower than the mean-field Peierls transition temperature. We formulate the effective Ising model, which describes such a transition, investigate the doping dependence of the (spin-)Peierls transition temperature and discuss several implications of the picture developed. The results are compared with the properties of the spin-Peierls system CuGeO3.  相似文献   

10.
The fluid system at the bulk liquid–gas coexistence in a presence of a sinusoidally corrugated substrate exhibits not only the wetting transition, but additionally a first-order, thin–thick transition. The mean-field analysis of this transition based on a simple effective Hamiltonian is valid only in long wavelength limit. In this case the filling transition occurs so close to the wetting temperature, that the behavior of the interface is dominated by fluctuations, therefore the mean-field approach breaks down. We analyze the filling transition with the help of Hamiltonian evaluated from Landau theory. The applicability of our Hamiltonian is not restricted only to the vicinity of the wetting point. We obtain the phase diagram valid beyond the temperature range corresponding to the strong fluctuations regime. It displays more complex dependence on different length scales of the system and includes the old one as a particular case.  相似文献   

11.
We study the critical behavior of the surface on a semi-infinite simple cubic lattice Ising model with a bimodal random surface field by large cell mean-field renormaliza tion group method and Monte Carlo simulations. Our results show that the surface ferromagnetic phase exists in the weak random field range above the bulk critical temperature. The surface. specific heat is not divergence and the susceptibility show a cusp singularity at the surface ferromagnetic-paramagnetic transition for a relatively large and om field.  相似文献   

12.
The phase diagram for a system of spatially separated electrons and holes in coupled quantum wells or graphene double layers is studied in the framework of a BCS-like mean-field approach and a Landau expansion in terms of the pairing order parameter. We find a second order transition between an electron–hole plasma and a BCS phase, as well as a first-order transition between the BCS phase and a bosonic Mott phase of tightly bound electron–hole pairs without phase coherence. The electron–hole plasma exists at low and at high densities for weak interaction, the BCS phase at moderate density and the Mott phase at high density and strong interaction.  相似文献   

13.
14.
The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects, a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator are shown to lead to similar results. We find that, being quite small in the case of the symmetric many-fermion system the corrections to mean-field approximation become more important with increasing mass asymmetry.  相似文献   

15.
In this paper a simple mean-field model for the liquid-glass phase transition is proposed. This is the low density D-dimensional system of N particles interacting via infinite-range oscillating potential. In the framework of the replica approach it is shown that such a system exhibits the phase transition between the high-temperature liquid phase and the low-temperature glass phase. This phase transition is described in terms of the standard one-step replica symmetry breaking scheme.  相似文献   

16.
Density fluctuations resulting from spinodal decomposition in a nonequilibrium first-order chiral phase transition are explored. We show that such instabilities generate divergent fluctuations of conserved charges along the isothermal spinodal lines appearing in the coexistence region. Thus, divergent density fluctuations could be a signal not only for the critical end point but also for the first-order phase transition expected in strongly interacting matter. We also compute the mean-field critical exponent at the spinodal lines. Our analysis is performed in the mean-field approximation to the Nambu-Jona-Lasinio model formulated at finite temperature and density. However, our main conclusions are expected to be generic and model independent.  相似文献   

17.
王冠芳  傅立斌  赵鸿  刘杰 《物理学报》2005,54(11):5003-5013
研究了双势阱玻色-爱因斯坦凝聚体系(BEC)的自俘获现象(self-trapping). 在平均场近似下通过相平面(phase space)分析的方法研究了两种自俘获的机理:1)势阱中的粒子数在平衡位置附近振动,而相对相位随时间单调变化(running-phase); 2) 势阱中的粒子数和相对相位都在平衡点附近振动. 研究了周期调制场对自俘获现象的影响,发现发生自俘获现象的相变参数能够被周期场非常有效的调制,从而在弱相互作用BEC体系中也可以观察到自俘获现象. 还研究了多体量子涨落对自俘获现象的影响,讨论了在现有的实验条件下对凝聚体自俘获现象进行观察和周期调制. 关键词: 玻色-爱因斯坦凝聚 自俘获 双势阱 周期调制  相似文献   

18.
《Physica A》1996,229(2):181-187
The mean-field renormalization group is used to study the phase diagrams of a d-dimensional q-state clock spin-glass model. We found, for q = 3 clock, the transition from paramagnet to spin glass is an isotropic spin-glass phase, but for q = 4 clock, the transition from paramagnet to spin glass is an anisotropic spin-glass phase. However, for q ⩾ 5 clock, the result of anisotropic spin-glass phase depends on the temperature and the distribution of random coupling. While the coordinate number approaches infinity, the critical temperature evaluated by the mean-field renormalization group method is equal to that by the replica method.  相似文献   

19.
Effects of a magnetic field on the behaviors of TbVO4 which shows a cooperative Jahn-Teller phase transition have been investigated. The possibility that the system will return to the undistorted phase at low temperatures in a magnetic field is considered. We show that because of the weak coupling of the system to the magnetic field applied along the c-axis, the magnetic field required to see the transition of the crystal back to the undistorted phase is impractically high. Diluting the crystal with nonmagnetic ions is then a plausible approach in the study of this novel behavior of the system. We have also calculated the effects of a magnetic field applied in the basal plane and shown that the crystal would remain distorted for all temperatures except the cases when the field is applied along the crystallographic axes. Finally, we consider the effects of a magnetic field on the temperature behavior of the specific heat and show that the Schottky anomaly which occurs at a very low temperature (~1°K) will be shifted to a higher temperature by applying a magnetic field.  相似文献   

20.
A full mean-field solution of a quantum Heisenberg spin-glass model is presented in a large- N limit. A spin-glass transition is found for all values of the spin S. The quantum critical regime associated with the quantum transition at S = 0 and the various regimes in the spin-glass phase at high spin are analyzed. The specific heat is shown to vanish linearly with temperature. In the spin-glass phase, intriguing connections between the equilibrium properties of the quantum problem and the out-of-equilibrium dynamics of classical models are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号