首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents the results of an experimental study of a boundary layer disturbed by an incident shock for parameters which are characteristic of problems for flow about blade profiles in the final stages of high-power steam turbines.  相似文献   

3.
4.
Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.This work was supported by the Chinese National Science Foundation. Thanks for Prof. Z. B. Lin and Miss X. Y. Feng for their helps. The authors wish to express thanks to Professor W. Merzkirch who has helped us to check the paper again and again.  相似文献   

5.
A combined theoretical and experimental study is presented for the interaction between crossing shock waves generated by (10°, 10°) sharp fins and a flat plate turbulent boundary layer at Mach 8.3. The theoretical model is the full 3-D mean compressible Reynolds-averaged Navier-Stokes RANS) equations incorporating the algebraic turbulent eddy viscosity model of Baldwin and Lomax. A grid refinement study indicated that adequate resolution of the flowfield has been achieved. Computed results agree well with experiment for surface pressure and surface flow patterns and for pitot pressure and yaw angle profiles in the flowfield. The computations, however, significantly overpredict surface heat transfer. Analysis of the computed flowfield results indicates the formation of complex streamline and wave structures within the interaction region.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

6.
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction   总被引:2,自引:0,他引:2  
Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of the unperturbed boundary layer thickness and the measurement planes are located 0.1 and 0.6 boundary layer thicknesses from the wall. The micro-ramps generate packets of individual vortex pairs downstream of their vertices, which produce counter-rotating longitudinal streamwise vortex pairs in a time-averaged view. These structures induce a pronounced spanwise variation of the flow properties, namely the mixing across the boundary layer interface. The probability of reversed-flow occurrence is decreased by 20 and 30% for the single- and double-row configurations, respectively. Both configurations of micro-ramps stabilize the shock motion by reducing the length of its motion by about 20% in the lower measurement plane. The results are summarized by a conceptual model describing the boundary layer’s and interaction’s flow pattern under the effect of the micro-ramps.  相似文献   

7.
Particle image velocimetry is used to investigate the interaction between an incident shock wave and a turbulent boundary layer at Mach 2.1. A particle response assessment establishes the fidelity of the tracer particles. The undisturbed boundary layer is characterized in detail. The mean velocity field of the interaction shows the incident and reflected shock wave pattern, as well as the boundary layer distortion. Significant reversed flow is measured instantaneously, although, on average no reversed flow is observed. The interaction instantaneously exhibits a multi-layered structure, namely, a high-velocity outer region and a low-velocity inner region. Flow turbulence shows the highest intensity in the region beneath the impingement of the incident shock wave. The turbulent fluctuations are found to be highly anisotropic, with the streamwise component dominating. A distinct streamwise-oriented region of relatively large kinematic Reynolds shear stress magnitude appears within the lower half of the redeveloping boundary layer. Boundary layer recovery towards initial equilibrium conditions appears to be a gradual process.  相似文献   

8.
Gol'dfel'd  M. A. 《Fluid Dynamics》1985,20(5):728-734
An experimental study is made of the turbulent boundary layer in its interaction with a shock wave, the purpose being to clarify questions connected with the increase in the fullness of the velocity profiles. New systematic data are obtained on the development of the boundary layer, and its structure and asymptotic behavior beyond the interaction region. These results are for axisymmetric flow in the range of Mach numbers M=2–4 and angles of rotation of the flow 10–25°. Conditions of developed separation are included. Extensive information about the general properties of flows with separation has been obtained in a number of studies. A survey of these may be found, for example, in [1, 2]. Certain questions about the separation and reattachment of the boundary layer are clarified. The dimensions of the separation region are determined and its structure studied in detail for various shapes of the surface around which the flow takes place. Nevertheless it has not yet proved possible to reach a complete understanding of this complex phenomenon. Usually plane models have been used for the investigations, but in this case it is evidently impossible to exclude completely the influence of end effects on the flow in the interaction zone. Therefore it is preferable to study such flows in axisymmetric models; this considerably eases the task of analyzing and interpreting the results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 75–82, September–October, 1985.  相似文献   

9.
Detailed distributions of heat flux in the region of shock wave and turbulent boundary layer interaction induced by a cylinder were measured in the shock tunnel. Oil flow patterns and Schlieren photographs were taken. Empirical relations were given for determining separation shock angle, peaks of heat flux and their locations on both cylinder leading edge and flat plate surface, and other characteristic parameters of the interaction region.  相似文献   

10.
We present experimental results obtained in a turbulent boundary layer at a Mach number of 2.3 impinged by an oblique shock wave. Strong unsteadiness is developed in the interaction, involving several frequency ranges which can extend over two orders of magnitude. In this paper, attention is focused on the links between the low-frequency shock motions and the separation bubble, in particular phase relationships are evaluated. An interpretation based on a simple scheme of the streamwise evolution of the instantaneous pressure is proposed. As it is mainly based on the pressure signal properties inside the region of the shock oscillation, it may be expected that it will still be relevant for different configurations of shock-induced separation as compression ramp, blunt bodies, or over expanded nozzles.  相似文献   

11.
Gas flow and heat transfer on the surfaces of sharp and blunt plates is experimentally investigated in the presence of two forward-looking wedges at the Mach numbers M = 5, 6, and 8 and the Reynolds numbers up to ReL = 27×106. It is shown that the entropy layer generated by a small bluntness of the leading edge of the plate can considerably change the heat transfer, the gas pressure, and the friction in the zone of interference of the shock with the plate boundary layer. Under certain conditions a small plate bluntness can also lead to a qualitative change in the flow structure. The effect of constriction of the channel between the wedges on the interference flow is studied.  相似文献   

12.
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0∼4.7)×107/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30° for a sweepback angle of 67.6°. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10° and secondary separation were detected at deflection of ϑ≥20°. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements atM≥6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. The project supported by China Academy of Launch Vehicle Technology  相似文献   

13.
The aim of the present study is to examine the accuracy and improvement of various numerical methods in the solution of the transonic shock/turbulent boundary layer interaction problem and to show that a significant source of numerical inaccuracies in turbulent flows is not only the inadequacy of the turbulence model but also the numerical discretization. Comparisons between a Riemann solver and a flux-vector-splitting method as well as between various numerical high-order extrapolation schemes with corresponding experimental results are presented.  相似文献   

14.
15.
We present here experimental results in a shock wave/turbulent boundary layer interaction at Mach number of 2.3 impinged by an oblique shock wave, with a deflection angle of 9.5°, as installed in the supersonic wind tunnel of the IUSTI laboratory, France. For such a shock intensity, strong unsteadiness are developing inside the separated zone involving very low frequencies associated with reflected shock motions.The present work consists in simultaneous PIV velocity fields and unsteady wall pressure measurements. The wall pressure and PIV measurements were used to characterize the pressure distribution at the wall in an axial direction, and the flow field associated. These results give access for the first time to the spatial-time correlation between wall pressure and velocity in a shock wave turbulent boundary layer interaction and show the feasibility of such coupling techniques in compressible flows. Linear Stochastic Estimation (LSE) coupled with Proper Orthogonal Decomposition (POD) has been applied to these measurements, and first results are presented here, showing the ability of these techniques to reproduce both the unsteady breathing of the recirculating bubble at low frequency and the Kelvin–Helmholtz instabilities developing at moderate frequency.  相似文献   

16.
An integral method of analyzing turbulent flow behind plane and axisymmetric steps is proposed, which will permit calculation of the pressure distribution, the displacement thickness, the momentum-loss thickness, and the friction in the zone of boundary layer interaction with an external ideal flow. The characteristics of an incompressible turbulent equilibrium boundary layer are used to analyze the flow behind the step, and the parameters of the compressible boundary layer flow are connected with the parameters of the incompressible boundary layer flow by using the Cowles-Crocco transformation.A large number of theoretical and experimental papers devoted to this topic can be mentioned. Let us consider just two [1, 2], which are similar to the method proposed herein, wherein the parameter distribution of the flow of a plane nearby turbulent wake is analyzed. The flow behind the body in these papers is separated into a zone of isobaric flow and a zone of boundary layer interaction with an external ideal flow. The jet boundary layer in the interaction zone is analyzed by the method of integral relations.The flow behind plane and axisymmetric steps is analyzed on the basis of a scheme of boundary layer interaction with an external ideal supersonic stream. The results of the analysis by the method proposed are compared with known experimental data.Notation x, y longitudinal and transverse coordinates - X, Y transformed longitudinal and transverse coordinates - , *, ** boundary layer thickness, displacement thickness, momentum-loss thickness of a boundary layer - , *, ** layer thickness, displacement thickness, momentum-loss thickness of an incompressible boundary layer - u, velocity and density of a compressible boundary layer - U, velocity and density of the incompressible boundary layer - , stream function of the compressible and incompressible boundary layers - , dynamic coefficient of viscosity of the compressible and incompressible boundary layers - r1 radius of the base part of an axisymmetric body - r radius - R transformed radius - M Mach number - friction stress - p pressure - a speed of sound - s enthalpy - v Prandtl-Mayer angle - P Prandtl number - Pt turbulent Prandtl number - r2 radius of the base sting - b step depth - =0 for plane flow - =1 for axisymmetric flow Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–40, May–June, 1971.In conclusion, the authors are grateful to M. Ya. Yudelovich and E. N. Bondarev for useful comments and discussions.  相似文献   

17.
B. A. Kader 《Fluid Dynamics》1979,14(2):283-289
Dimensional analysis is used to find the change in the thickness of a turbulent boundary layer that develops under conditions of a strong positive or negative pressure gradient. Comparison of the expression for the thickness with the available experimental data makes it possible to determine the universal constant in the expression. An interpolation dependence is proposed, this holding for all not too rapidly varying velocity distributions on the outer boundary of the turbulent boundary layer. The results of calculations made with this dependence are compared with numerous experimental data on the change in the thickness of turbulent boundary layers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2. pp. 150–156, March–April, 1979.  相似文献   

18.
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.  相似文献   

19.
The cross-correlated power spectrum of wall pressure fluctuations and the derivative of the turbulent velocity component normal to the wall is measured at a longitudinal coordinate; this spectrum, along with the mean shear, determines the contribution of the mean-shear-turbulence interaction to pressure fluctuations at a wall under a turbulent boundary layer. The spectrum is used to calculate the power spectrum and the transverse cross-correlated power spectrum of pressure fluctuations at the wall. Comparison of calculated and directly measured pressure spectra indicates that wall pressure fluctuations are almost completely determined by the mean-shear-turbulence interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 28–34, July–August, 1976.The author thanks G. P. Morozov-Rostovskii and Yu. A. Konokhov for fabricating a miniature hot-wire anemometer and help in carrying out the experiment.  相似文献   

20.
Zubin  M. A.  Ostapenko  N. A. 《Fluid Dynamics》1983,18(6):867-875
Fluid Dynamics - Published experimental data [1–5] are used to analyze the influence of the determining parameters on the size of the separation region formed when a normal shock wave...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号