首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of natural kaolinite-group minerals, nacrite, dickite, kaolinite and halloysite, were heated up to 1400 and investigated by means of ESR at the X band. The results show systematic differences, some of which are related to the crystallinity of the kaolinites and to the mutual orientation of adjacent layers in polytype modifications. The most intense features of the spectra, centred atg values of 4.3 and 3.0, are attributed to Fe3+ ions occupying different sites in the structure. Studies of the changes caused in the ESR spectra by thermal treatment led to some general conclusions about structure modification.
Zusammenfassung Bis auf 1400 C erhitzte natürliche Minerale der Kaolinit-Gruppe (Nacrit, Dickit, Kaolinit und Halloysit) wurden mittels ESR im X-Band untersucht. Es wurden systematische Unterschiede beobachtet, von denen einige auf die KristallinitÄt und auf die gegenseitige Orientierung benachbarter Schichten in Polytyp-Modifikation zurückzuführen sind. Die am deutlichsten hervortretenden Eigenheiten der Spektren liegen beig-Werten um 4.3 und 2.0 und sind verschiedene kristallographische Positionen einnehmenden Fe3+-Ionen zuzuschreiben. Die durch thermische Behandlung bewirkten VerÄnderungen in den ESR-Spektren sind in übereinstimmung mit einigen die Strukturmodifikationen betreffenden allgemeinen Feststellungen.

, , , 1400, -. , . g=4.3 2.0 Fe3+, . , , .
  相似文献   

2.
An interpretation of the IR spectra of kaolinite, dickite, and nacrite is proposed, based on the concept of resonance interaction of two intrasurface hydroxyl groups, and their manifestation in the spectrum as a split doublet 30 cm–1 and by the individual vibration of a third intrasurface OH-group. The structural identification of each band in the IR spectra of the kaolinite minerals is given. It was demonstrated that thermal dehydroxylation under vacuum of kaolinite occurred in two stages with activation energies of 43 and 84 kJ/mole. The activation energy of proton delocalization of the structural hydroxyl groups of kaolinite has been evaluated (E 13 kJ/mole). The contribution of the energy of the interlayer hydrogen bonds (AH 28 kJ/mole) to the total cohesion energy of adjoining layers of kaolinite (Ec 165 kJ/mole) was calculated.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 1, pp. 73–81, January–February, 1985.  相似文献   

3.
The aim of this study was to carry out kinetic, thermodynamic, and surface characterization of the sorption of Cs+ ions on natural minerals of kaolinite and clinoptilolite. The results showed that sorption followed pseudo-second-order kinetics. The activation energies were 9.5 and 13.9 kJ/mol for Cs+ sorption on kaolinite and clinoptilolite, respectively. Experiments performed at four different initial concentrations of the ion revealed that the percentage sorption of Cs+ on clinoptilolite ranged from 90 to 95, compared to 28 to 40 for the kaolinite case. At the end of a 1 week period, the percentage of Cs+ desorption from clinoptilolite did not exceed 7%, while it amounted to more than 30% in kaolinite, indicating more stable fixation by clinoptilolite. The sorption data were best described using Freundlich and D-R isotherm models. Sorption showed spontaneous and exothermic behavior on both minerals, with deltaH(0) being -6.3 and -11.4 kJ/mol for Cs+ uptake by kaolinite and clinoptilolite, respectively. Expanding the kaolinite interlayer space from 0.71 to 1.12 nm using DMSO intercalation, did not yield a significant enhancement in the sorption capacity of kaolinite, indicating that the surface and edge sites of the clay are more energetically favored. EDS mapping and elemental analysis of the surface of kaolinite and clinoptilolite revealed more intense signals on the surface of the latter with an even distribution of sorbed Cs+ onto the surfaces of both minerals.  相似文献   

4.
The review consists of four parts. Part I is about the thermal transformation in clay minerals under firing and about the properties of fired clay. The transformations in the clay are expressed quantitatively with the extent of conversion, α, which is the function of two parameters of firing process, time t and temperature T: α?=?f(tT). Part II is about the estimation of firing temperature after the analysis of the products of firing clays. All the estimations are speculative, without mathematical equations. It is impossible to derive the value of only one variable T from α?=?f(t,T), the function of two variables. Part III is about the long-term inverse transformation in fired ceramic paste under ambient conditions. The mass gain as a function of time is used for the evaluation of the time elapsed from the ancient firing, t. Part IV is about the visualization of the extent of conversion of the clay in the paste after all direct and reverse reactions, i.e., α.  相似文献   

5.
Airborne clay mineral particles have long atmospheric lifetimes due to their relatively small size. To assess their impact on trace atmospheric gases, we investigated heterogeneous reactions on prototype clay minerals. Diffuse reflectance infrared spectroscopy identified surface-adsorbed products formed from the uptake of gaseous nitric acid and nitrogen dioxide on kaolinite and pyrophyllite. For kaolinite, a 1:1 phyllosilicate, HNO3 molecularly adsorbed onto the octahedral aluminum hydroxide and tetrahedral silicon oxide surfaces. Also detected on the aluminum hydroxide surface were irreversibly adsorbed monodentate, bidentate, bridged, and water-coordinated nitrate species as well as surface-adsorbed water. Similar adsorbed products formed during the uptake of NO2 on kaolinite at relative humidity (RH) of 0%, and the reaction was second order with respect to reactive surface sites and 1.5 +/- 0.1 for NO2. Reactive uptake coefficients, calculated using Brunauer, Emmett, and Teller surface areas, increased from (8.0 +/- 0.2) x 10(-8) to (2.3 +/- 0.4) x 10(-7) for NO2 concentrations ranging from 0.56 x 10(13) to 8.8 x 10(13) molecules cm(-3). UV-visible spectroscopy detected gaseous HONO as a product for the reaction of NO2 on wet kaolinite. The uptake of HNO3 on pyrophyllite, a 2:1 phyllosilicate, resulted in stronger signal for nitric acid molecularly adsorbed on the silicon oxide surface compared to kaolinite. Monodentate, bridged, and water-coordinated nitrate species bound to aluminum sites also formed during this reaction indicating that reactive sites on edge facets are important for this system. The uptake of NO2 on pyrophyllite, gammaBET = (7 +/- 1) x 10(-9), was significantly lower than kaolinite because NO2 did not react with the dominant tetrahedral silicon oxide surface. These results highlight general trends regarding the reactivity of tetrahedral silicon oxide and octahedral aluminum hydroxide clay surfaces and indicate that the heterogeneous chemistry of clay aerosols varies with mineralogy and cannot be predicted by elemental analysis.  相似文献   

6.
Minerals in the rosasite group namely rosasite, glaucosphaerite, kolwezite, mcguinnessite have been studied by a combination of infrared and Raman spectroscopy. The spectral patterns for the minerals rosasite, glaucosphaerite, kolwezite and mcguinnessite are similar to that of malachite implying the molecular structure is similar to malachite. A comparison is made with the spectrum of malachite. The rosasite mineral group is characterised by two OH stretching vibrations at approximately 3401 and 3311 cm-1. Two intense bands observed at approximately 1096 and 1046 cm-1 are assigned to nu1(CO3)2- symmetric stretching vibration and the delta OH deformation mode. Multiple bands are found in the 800-900 and 650-750 cm-1 regions attributed to the nu2 and nu4 bending modes confirming the symmetry reduction of the carbonate anion in the rosasite mineral group as C2v or Cs. A band at approximately 560 cm-1 is assigned to a CuO stretching mode.  相似文献   

7.
The thermal transformations of muscovite flakes are a key point in many applications because besides dehydroxylation a significant exfoliation process occurs. Dehydroxylation kinetic is experimented by isothermal TG analyses in the 700–850°C temperature range and described with the Avrami theory. Hydroxyl condensation predominates at the onset of the process, but water diffusion is the most important process when the transformed fraction is high. The progressive transition between the two transformation stages contrast with the more accentuated transition for a ground muscovite. The activation energy varies weakly (190–214 kJ mol−1) in the whole transformation process that supports the co-existence of hydroxyl condensation and diffusion phenomena. Dehydroxylation kinetic increases strongly with temperature and decreases with the reaction advancement. Exfoliation is correlated with dehydroxylation kinetic and occurs in a narrow transformation and temperature ranges. An in-situ combination process of hydroxyls occurs and water vapor favors the layer expansion.  相似文献   

8.
Concentration of lanthanides (Lns) in alunite group mineral samples from the Kusatsu-Shirane volcano area, Gunma, Japan, were determined by neutron activation analysis. Their Ln abundance patterns showed enrichment of light Lns relative to their original rocks and GSJ geochemical reference samples of feldspars. It was found that the concentration of light Lns increased with increasing concentration of K and P. The positive correlation between the light Lns and P concentration suggested the formation of florencite, whereas the positive correlation between the concentration of light Lns and K may reflect the difference between the solubility of double salts of K and Ln sulfates of light Lns and heavy Lns, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The attachment of Pseudomonas (P.) putida onto well (KGa-1) and poorly (KGa-2) crystallized kaolinite was investigated in this study. Batch experiments were carried out to determine the attachment isotherms of P. putida onto both types of kaolinite particles. The attachment process of P. putida onto KGa-1 and KGa-2 was adequately described by a Langmuir isotherm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance were employed to study the attachment mechanisms of P. putida. Experimental results indicated that KGa-2 presented higher affinity and attachment capacity than KGa-1. It was shown that electrostatic interactions and clay mineral structural disorders can influence the attachment capacity of clay mineral particles.  相似文献   

10.
Cavity filling natrolites in basalts from several localities of Balaton Highland were investigated by different methods. The measurements of different thermal parameters (corrected decomposition temperature and activation energy) were first applied for natrolite. Energy dispersive spectroscopy (EDS) was used for the observation of chemical composition. Few of the minerals are regular, ordered natrolite, the majority proved to be so called ‘tetranatrolite’. According to our observations both natrolite and ‘tetranatrolite’ may appear in the same locality and chemical inhomogenity can be demonstrated within a single natrolite needle.  相似文献   

11.
12.
Dehydroxylation and catalytic conversion of m-xylene over dealuminated zeolites were studied.
- .
  相似文献   

13.
The effects of temperature (373–1373 K) on the point of zero charge (PZC) and isoelectric point (IEP) of a red soil rich in kaolinite and iron minerals were studied. PZC values of the soil treated at 373 and 573 K indicated the presence of iron oxide. The soil calcined between 773 and 1173 K shows a PZC almost coincident with the respective values of kaolinite. At 1373 K, the PZC of the soil is nearer to the value of iron oxide. In the entire temperature range studied the PZC values were lower than the IEP values. An approach of PZC and IEP values was observed after a partial removal of iron oxide by the dithionite-citrate-bicarbonate (DCB) method. The analyses of the PZC and IEP values, of electron probe micro analysis (EPMA) data and of specific surface areas evidence a specific adsorption of iron oxide on kaolinite. Finally, the dissolution sequence of iron and aluminium contained in soil was determined using hydrochloric acid.  相似文献   

14.
Near-infrared (NIR) and IR spectroscopy have been applied for the characterisation of three complex Cu–Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cation substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and in the vibrational spectra of these Cu–Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers, 11,390 and 7,545 cm−1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for ν3 and ν4 (SO4)2− stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction in symmetry of the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3− vibrational modes at 1,090 and 990 cm−1. The range of IR absorption is higher in ktenasite than in kipushite, while it is intermediate in orthoserpierite.  相似文献   

15.
The formation and evolution with temperature of the crystalline phases in sol-gel ZrO2 was analyzed by using X-ray powder diffraction, refinement of the crystalline structures, ESR, and UV-Vis spectroscopy. The precursor phase of crystalline zirconia was amorphous Zr(OH)4 with the same local order as the tetragonal crystalline phase. This amorphous phase dehydroxylated with temperature, generating nanocrystalline tetragonal zirconia, and producing point defects that stabilized the tetragonal structure, generated a paramagetic ESR signal with g values like the free electron, and had a light absorption band at 310 nm. When the sample was annealed at higher temperatures, it continued dehydroxilating, and the point defects disappeared, causing the transformation of the nanocrystalline tetragonal phase into nanocrystalline monoclinic zirconia. The two crystalline nanophases coexisted since the beginning of crystallization.  相似文献   

16.
The kinetics of thermal dehydroxylation of aluminuous goethites [1] synthesised from a ferrous salt has been re-examined using the general reaction order kinetic law. The utilised data processing was based on the procedures employed by dissolution kinetics. Recalculation of the activation energies EA of the dehydroxylation yielded the values 130, 132, 128, and 123 kJ mol−1 for pure goethite, goethite with 10, 20, and 30 mol% Al substitution, respectively. The values of EA are in a good agreement with those given for goethite in literature. The EA values are linearly related with the chemically bound excess H2O/OH in the crystal lattice that is apparently influenced by Al substitution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
18.
A comparison is made of the mechanochemical activation of three low- and one high-defect kaolinite using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. The effect of mechanochemical alteration of the kaolinites is greater for the low-defect kaolinites. The effectiveness of the mechanochemical treatment is represented by the slope of the d(001) peakwidth-grinding time line. High-defect kaolinite is not significantly altered by the grinding treatment. The effect of mechanochemical treatment on peakwidth was independent of the presence of quartz; the quartz acts as an additional grinding medium. The effectiveness of the mechanochemical treatment depends on the crystallinity of the kaolinite. Two processes are identified in the mechanochemical activation of the kaolinite: first the delamination of kaolinite appears to take place in the first hour of grinding and second a recombination process results in the reaggregation of the ground crystals. During this process proton hopping occurs and reaction to form water takes place. This water is then adsorbed and coordinated to surface-active sites created during mechanochemical treatment.  相似文献   

19.
The surface energy of kaolinite was determined from the water adsorption isotherm, the water/kaolinite contact angle, and the surface tension of water, using a formula obtained by combining the Young equation with the general equation of pair interaction. This formula could be represented by a polynomial function whose roots gave one real value of 252.57±2.75 mJ m–2 for the surface energy of kaolinite. An important feature of the procedure for obtaining this energy is the use of the Young equation to determine the range in which the value of the surface energy lies.  相似文献   

20.
The adsorption of polyvinylimidazole (PVI) onto kaolinite from aqueous solutions has been investigated systematically as a function of parameters such as calcination temperature of kaolinite, pH, ionic strength, and temperature. According to the experimental results, the adsorption of PVI increases with pH from 8.50 to 11.50, temperature from 25 to 55 degrees C, and ionic strength from 0 to 0.1 mol L(-1). The kaolinite sample calcined at 600 degrees C has a maximum adsorption capacity. Adsorption isotherms of PVI onto kaolinite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. Furthermore, the zeta potentials of kaolinite suspensions have been measured in aqueous solutions of different PVI concentrations and pH. From the experimental results, (i) pH strongly alters the zeta potential of kaolinite; (ii) kaolinite has an isoelectric point at about pH 2.35 in water and about pH 8.75 in 249.9 ppm PVI concentration; (iii) PVI changes the interface charge from negative to positive for kaolinite. The study of temperature effect has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) has shown that kaolinite can be used for adsorption of PVI from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号