首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自行设计开发了一套便于与电泳芯片集成的一体式柱端安培检测池系统.该系统由整块透明有机玻璃精密加工而成,包括电泳芯片支架和安培检测池两部分,芯片可通过芯片插槽和不锈钢夹具固定在芯片支架上,各种检测用电极可直接通过螺母固定在安培检测池中.以100μmol/L的DA为模式分析物,分别采用直径为100、300和500μm的铂金圆盘电极与表观直径为240μm的碳纤维电极作为工作电极均在该装置上实现了良好组装和高灵敏检测.采用碳纤维工作电极对该系统的检测参数进行了优化.测试结果表明该系统在电化学清洗程序下连续六次测定100μmol/L多巴胺的峰电流相对标准偏差为3.2%,保留时间相对标准偏差为0.5%,DA的检测限为0.4μmol/L(按照S/N=3计).该系统体积小巧,测试稳定,检测灵敏度较高,工作电极更换方便,适合作为芯片电泳柱端安培检测通用平台.  相似文献   

2.
We describe a simple and easy way to construct gold microelectrodes for amperometric detection in capillary electrophoresis (CE). The gold microelectrodes, in single or twin sets, were obtained from recordable compact discs (gold-sputtered type), which present highly reproducible surface characteristics. The performance of these electrodes was evaluated by using a home-made CE equipment. The basic steps for the electrode construction are: drawing on a microcomputer; laser printing of the design on wax paper; heat-transfer of the toner onto the gold surface of a peeled recordable compact disc (CD-R); etching of the gold layer from unprinted regions; removal of the toner with a solvent; sealing of unused electrode areas with varnish. One electrode at a time was connected to a potentiostat (or two, to a bipotentiostat) and operated in a wall jet configuration relative to the CE capillary outlet. The amperometric signals were integrated for quantification purposes. Repetitive injections (n = 10) of a mixture containing iodide, ascorbic acid, dipyrone, and acetaminophen (20, 200, 500, and 100 microM), presented relative standard deviations of 2.9, 4.5, 6.1, and 4.0%, respectively. For these analytes, the detection limits (S/N = 3, 30 s of 100 mm hydrodynamic injection) were 0.1, 0.5, 3.1, and 1.1 microM, respectively.  相似文献   

3.
A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various sizes and compositions is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against poly(dimethylsiloxane) (PDMS)-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode is used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing compositions enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65?μm in diameter and 27?μm in height) that can be integrated within a fluidic network. As compared with the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/μM for the pillar versus 4.2 pA/μM for the flat electrode) and limit of detection (20 nM for the pillar versus 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface is generated as desired.  相似文献   

4.
新型安培检测毛细管电泳微系统   总被引:3,自引:0,他引:3  
吴友谊  吴明嘉 《分析化学》2001,29(2):138-141
将电极、6cm分离毛细管、缓冲池、检测池集成于8.4×5.0cm有机玻璃片上,制作了一个毛细管电泳微系统。以碳纤维微盘电极作为工作电极,采用三电极体系柱端检测了1×10-4mol/L多巴胺(DA),具有良好的重现性,检测限3.6×10-8 mol/L,线性范围5×10-7~1×10-4mol/L,并在该系统上分离了邻苯二酚(CA)和多巴胺的混合物。  相似文献   

5.
Sato K  Jin JY  Takeuchi T  Miwa T  Takekoshi Y  Kanno S  Kawase S 《The Analyst》2000,125(6):1041-1043
An indirect amperometric detection of underivatized amino acids has been developed using a carbon film based ring-disk electrode (CFBRDE) in microcolumn liquid chromatography (LC). Bromide present in the mobile phase could be efficiently oxidized to bromine at the upstream (disk) electrode, and was subsequently detected at the downstream (ring) electrode. Most of the underivatized amino acids that are electroinactive under conventional amperometric conditions react rapidly with the electrogenerated bromine, the concentration of amino acids can therefore be indirectly determined by continuously monitoring the reduction current of bromine. The signal monitored at the downstream electrode was largely dependent on the bromide concentration in the mobile phase. Under optimized conditions, the response linearly increased with the concentration for most of the amino acids over a concentration range of 1-100 microM, with a correlation coefficient of 0.990-0.993. The detection limits for most of the amino acids were below 1 microM (0.2 pmol). It was demonstrated that detection with a ring-disk electrode offers the advantages of achieving a much higher collection efficiency caused by a decrease in flow rate in the microcolumn LC.  相似文献   

6.
《Electroanalysis》2005,17(13):1125-1131
Pulsed electrochemical detection (PED) is an excellent method for detection of analytes that normally foul electrodes. In PED, the detection electrode is first cleaned at a high positive potential, then reactivated at a negative potential dissolving the surface oxide, and finally used to oxidize the analyte at a moderate positive potential. Due to the advantages and versatility of PED, many different variations of the detection waveform can be found in literature. This review focuses on application of PED to CE and in particular, the most commonly used modes: pulsed amperometric detection (PAD) and integrated pulsed amperometric detection (iPAD).  相似文献   

7.
塑料芯片毛细管电泳电化学检测系统及其性能评价   总被引:2,自引:0,他引:2  
近年来,高分子芯片毛细管电泳技术发展迅速,以聚甲基丙烯酸甲酯(PMMA)为代表的塑料电泳芯片由于其低廉的制作成本与良好的电渗性能,已经成为芯片电泳技术发展的一个重要方向,电化学检测具有灵敏度高、选择性好和易于微型化等优点,因此在塑料芯片电泳领域中具有较好的应用前景。  相似文献   

8.
Constant-potential amperometric detection of carbohydrates, amino acids, and other aliphatic organic compounds is possible by means of their oxidation in alkaline solution at a variety of metal/metal oxide electrodes including Pt, Au, Cu, Ni, Ag and Co. The experimental conditions required for optimum detection and the analytical performance obtainable vary widely for different electrode materials and analytes. In this work, the cyclic voltammetric behavior exhibited by selected analytes (glucose, glycine, lactic acid, ethylamine and ethanol) at each of these electrodes was used to determine the optimum potentials suitable for flow detection so that the capabilities of the different metal electrodes could be evaluated and systematically compared. In general, the Cu electrode was found to provide superior detection capabilities in terms of its range of response, detection limits and especially stability. Despite the fact that Pt and Au are typically used only with a pulsed applied potential, both can provide long-lived constant-potential detection of carbohydrates and other analytes at low concentrations if the potentials ere carefully chosen and the electrodes are allowed to undergo an initial stabilization period.  相似文献   

9.
In this study, a wall-jet flow cell with a GRC (graphite reinforced by carbon) electrode was designed for the amperometric detection of phenol and chlorophenols in liquid chromatography. The voltammetric responses of these analytes at the GRC electrodes are very similar to those at conventional glassy carbon electrodes. As the GRC electrodes were made of the same materials as commercially available mechanical pencil leads, they exhibit the advantages of low cost, simple surface renewability, lower residual current, and good electrode-to-electrode reproducibility, and thus can be used as disposable-type electrodes. Chromatographic separations of phenol, o-chlorophenol (o-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) were achieved with an ODS column using a mobile phase containing a mixture of CH3CN and H20 (40:60) containing 25 mM L-(+)tartaric acid (pH = 4.5). Amperometric detections were based on the electrochemical oxidation of these compounds around +0.9 V vs. Ag/AgCl. Under the optimized conditions, linear calibrations were obtained in a range up to 100 microM for phenol, o-CP, 2,4-DCP, 2,4,6-TCP, and 200 microM for PCP, with the correlation coefficients r2 of 0.9992, 0.9997, 0.9986, 0.9992, and 0.9968, respectively. The chromatographic detection limits for the tested analytes were obtained at pmol levels.  相似文献   

10.
A chip-type thin-layer radial flow cell was developed as an amperometric detector for capillary electrophoresis. We fabricated a carbon film-based interdigitated ring-shaped array (IDRA) microelectrode with a 2 microm bandwidth and an almost 1 microm gap on a glass plate and used it as a working electrode. A fused-silica capillary was arranged above the IDRA electrode using a guide hole drilled through the acryl plate that formed the flow cell lid. A flow channel for use in connecting the outlet capillary was also fabricated in the acryl plate. We characterized the analytical performance of the IDRA electrode in the microchip flow cell in terms of linear concentration range, sensitivity and concentration detection limit. We achieved a collection efficiency and catechol redox cycle at the IDRA microelectrode of 65% and 1.71, respectively, and thus a high sensitivity and low detection limit of 392.9 pA/microM and 15 nM for dopamine hydrochloride. We examined the reproducibility of the detector and found that the run-to-run and detector-to-detector relative standard deviations were both less than 10%.  相似文献   

11.
A method based on capillary electrophoresis with amperometric detection has been developed for the determination of luteolin, chlorogenic acid, 3,5-dicaffeoylquinic acid and caffeic acid in the dried flower buds, leaves and stems (three medicinal parts) of Lonicera confusa DC., respectively. The effects of several important factors such as detection potential, the concentration of the running buffer, separation voltage and injection time were investigated to acquire the optimum conditions. The detection electrode was a 300 microm diameter carbon disc electrode at a working potential of + 0.90 V (vs saturated calomel electrode). The four analytes can be well separated within 10 min in a 40 cm-long fused silica capillary at a separation voltage of 12 kV in a 50 mM borate-25 mM phosphate buffer (pH 8.0). The relationship between peak current and analyte concentration was linear over about 3 orders of magnitude with detection limits (S/N = 3) ranging from 0.35 to 0.52 microM for all analytes. The proposed method has been successfully applied to the monitoring of bioactive constituents in the real plant samples with satisfactory assay results.  相似文献   

12.
Organic disulfides generally are not oxidized at bare electrodes under conditions that are suited to routine amperometric detection, and thiols are typically oxidized in a manner that leads to partial blockage of the surface. Modification of a carbon electrode with a film of Ru(III,IV) oxide stabilized with cyanocross-links permits the amperometric detection of cystine, cysteine, glutathione, methionine, and glutathione disulfide under conditions compatible with their chromatographic separation on a strong cation-exchange column. Detection limits of 0.2-0.6 microM and linear dynamic ranges of at least 1-50 microM were obtained. The electrode was stable for at least 11 days with a pH 1 citrate, phosphate mobile phase.  相似文献   

13.
A glass capillary ultramicroelectrode (tip diameter approximately 1.2 microm) having an electrokinetic sampling ability is described. It is composed of a pulled glass capillary filled with an inner solution and three internal electrodes (Pt working and counter electrodes and an Ag/AgCl reference electrode). The voltammetric response of the capillary electrode is based on electrokinetic transport of analyte ions from the sample solution into the inner solution across the conical tip. It was found that the electrophoretic migration of analytes at the conical tip is faster than electroosmotic flow, enabling electrokinetic transport of analyte ions into the inner solution of the electrode. By using [Fe(CN)6]4- and (ferrocenylmethyl)trimethylammonium (FcTMA+) ions as model analytes, differential pulse voltammetric responses of the capillary electrode were investigated in terms of tip diameter of the capillary, sampling voltage, sampling time, detection limit and selectivity. The magnitude of the response depends on the size and charge of analyte ions. With a capillary electrode having a approximately 1.2-microm tip diameter, which minimizes non-selective diffusional entry of analytes, the response after 1 h sampling at +1.7 V is linearly related to [Fe(CN)6]4- concentration in the range of 0.50-5.0 mM with the detection limit of 30 microM. Application of a potential of the same sign as that of the analyte ion forces the analyte to move out from the electrode to the solution, enabling reuse of the same capillary electrode. The charge-selective detection of analytes with the capillary electrode is demonstrated for [Fe(CN)6]4- in the presence of FcTMA+.  相似文献   

14.
Chanpen Karuwan 《Talanta》2009,79(4):995-555
A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a β-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate. Silver, platinum, gold and stainless steel catalyst layers were coated by DC-sputtering. CNTs were then grown on the glass substance by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. 100-μm-deep and 500-μm-wide PDMS microchannels fabricated by SU-8 molding and casting were then bonded on glass substrate by oxygen plasma treatment. Flow injection and ECD of salbutamol was performed with the amperometric detection mode for in-channel detection of salbutamol. The influences of flow rate, injection volume, and detection potential on the response of current signal were optimized. Analytical characteristics, such as sensitivity, repeatability and dynamic range have been evaluated. Fast and highly sensitive detection of salbutamol have been achieved. Thus, the proposed combination of the efficient CNT electrode and miniaturized lab-on-a-chip is a powerful platform for β-agonists detection.  相似文献   

15.
The first carbon-based dual-electrode detector for microchip capillary electrophoresis (CE) is described. The poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to another PDMS layer containing carbon fiber working electrodes. End-channel amperometric detection was employed and the performance of the chip was evaluated using catechol. The response was found to be linear between 1 and 600 microM with an experimentally determined limit of detection (LOD) of 500 nM and a sensitivity of 30 pA/microM. Collection efficiencies for catechol ranged from 36.0 to 43.7% at field strengths of 260-615 V/cm. The selectivity that can be gained with these devices is demonstrated by the first CE-based dual-electrode detection of a Cu(II) peptide complex. These devices illustrate the potential for a rugged and easily constructed microchip CE system with an integrated carbon-based detector of similar scale.  相似文献   

16.
J Inoue  T Kaneta  T Imasaka 《Electrophoresis》2012,33(17):2743-2747
Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions.  相似文献   

17.
Wang Y  Chen H  He Q  Soper SA 《Electrophoresis》2008,29(9):1881-1888
A fully integrated polycarbonate (PC) microchip for CE with end-channel electrochemical detection operated in an amperometric mode (CE-ED) has been developed. The on-chip integrated three-electrode system consisted of a gold working electrode, an Ag/AgCl reference electrode and a platinum counter electrode, which was fabricated by photo-directed electroless plating combined with electroplating. The working electrode was positioned against the separation channel exit to reduce post-channel band broadening. The electrophoresis high-voltage (HV) interference with the amperometric detection was assessed with respect to detection noise and potential shifts at various working-to-reference electrode spacing. It was observed that the electrophoresis HV interference caused by positioning the working electrode against the channel exit could be diminished by using an on-chip integrated reference electrode that was positioned in close proximity (100 microm) to the working electrode. The CE-ED microchip was demonstrated for the separation of model analytes, including dopamine (DA) and catechol (CA). Detection limits of 132 and 164 nM were achieved for DA and CA, respectively, and a theoretical plate number of 2.5x10(4)/m was obtained for DA. Relative standard deviations in peak heights observed for five runs of a standard solution containing the two analytes (0.1 mM for each) were 1.2 and 3.1% for DA and CA, respectively. The chip could be continuously used for more than 8 h without significant deterioration in analytical performance.  相似文献   

18.
Wang J  Chen G  Wang M  Chatrathi MP 《The Analyst》2004,129(6):512-515
The preparation of carbon nanotube (CNT)/copper composite electrodes, based on co-mixing CNT and Cu powders within mineral oil, is described. The new composite electrode is used for improved amperometric detection of carbohydrates following their capillary electrophoresis (CE) microchip separations. The CNT/Cu composite electrode detector displays enhanced sensitivity compared to detectors based on copper or CNT alone. The marked catalytic action of the CNT/Cu composite material permits effective low potential (+0.5 V vs. Ag/AgCl) amperometric detection, and is coupled to the renewability, bulk modification and versatility advantages of composite electrodes. The CNT/Cu composite surface also leads to a greater resistance to surface fouling compared to that observed at the copper electrode. Factors affecting the electrocatalytic activity and the CE microchip detection are examined and optimized. The CNT/Cu composite electrode is also shown to be useful for the detection of amino acids as indicated from preliminary results. While the present work has focused on the enhanced CE microchip detection of carbohydrates and amino acids, the CNT/metal-composite electrode route should benefit the detection of other important groups of analytes.  相似文献   

19.
With a view of simultaneous determination of physio‐active ingredients in oolong tea infusion: sugars, amino acids, epigallocatechin gallate and ascorbic acid, a novel CZE with amperometric detection method was studied. Operated in a wall‐jet configuration, 100 mmol/L NaOH was used in detecting cell to lead the electrocatalysis oxidation behaviors of the analytes on a 300 μm diameter copper‐disc electrode (working electrode), while in separating capillary, a mild alkaline running buffer consisting in a mixture of 30 mmol/L borate and 40 mmol/L phosphates charged and carried analytes to detecting end. The methodology research was performed for system stability and suitability. Under the optimal CE conditions, analytes could be separated within moderate time period. Good linearity between peak area and concentration existed over three orders of magnitude; lower RSD and LOD were achieved. The oolong tea infusion was assayed and result was satisfactory.  相似文献   

20.
Yao X  Wang J  Zhang L  Yang P  Chen G 《Talanta》2006,69(5):1285-1291
A microchip capillary electrophoresis (CE)–amperometric detection (AD) system has been fabricated by integrating a two-dimensionally adjustable CE microchip and an amperometric detection cell containing a one-dimensionally adjustable disc detection electrode in a Plexiglas holder. It facilitates the precise three-dimensional alignment between the channel outlet and the detection electrode without a complicated three-dimensional manipulator. The performance of this unique system was demonstrated by separating four nitroaromatic pollutants (nitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and p-nitrobenzene). Factors influencing their separation and detection processes were examined and optimised. The four analytes have been well-separated within 120 s in a 75 cm long separation channel at a separation voltage of +2000 V using an electrophoretic separation medium containing 15 mM borax and 15 mM sodium dodecyl sulfate (pH 9.2). Highly linear response is obtained for the four analytes over the range of 0–5 ppm with the detection limits ranging from 12 to 52 ppb. The present system demonstrated long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n = 9). The new approach for the microchannel–electrode alignment should find a wide range of applications in other microfluidic analysis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号