首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
[reaction: see text] alpha-Methylation of 3 gave 5 as a major product whereas 4 gave 6 predominantly, although both 3 and 4 have an (S)-chiral center at C(3). This indicates that chirality at C(2) in 3 and 4 was memorized in the corresponding intermediate enolates and the induced chirality made a major contribution in the stereochemical course of the reaction, while chirality at the adjacent chiral center C(3) had little effect.  相似文献   

2.
Song D  McDonald R  West FG 《Organic letters》2006,8(18):4075-4078
Fused bicyclic pyran-2-ones with pendant furan side chains and an oxygenated stereogenic center adjacent to the pyranone ring oxygen were prepared via FeCl(3)-catalyzed Michael addition. Irradiation furnished the corresponding lactone-bridged tricyclic [4 + 4]-cycloadducts with good facial selectivity. Surprisingly, the major isomer resulted from approach of the furan from the same face as the protected alcohol. [reaction: see text]  相似文献   

3.
The Henry (nitroaldol) reaction of fluorinated nitro compounds with various aromatic aldehydes and a fluorinated aliphatic aldehyde to give β-fluoro-β-nitroalcohols which bearing a fluorinated quaternary carbon center was reported. The relative configuration of the major diastereoisomer of 2-fluoro-2-nitro-1-(4-nitrophenyl)-3-phenylpropanol (5bf) was determined by X-ray single crystal analysis.  相似文献   

4.
The in vitro autoxidation of N-hydroxyurea (HU) is catalyzed by Mn(III)TTEG-2-PyP(5+), a synthetic water soluble Mn(iii) porphyrin which is also a potent mimic of the enzyme superoxide dismutase. The detailed mechanism of the reaction is deduced from kinetic studies under basic conditions mostly based on data measured at pH = 11.7 but also including some pH-dependent observations in the pH range 9-13. The major intermediates were identified by UV-vis spectroscopy and electrospray ionization mass spectrometry. The reaction starts with a fast axial coordination of HU to the metal center of Mn(III)TTEG-2-PyP(5+), which is followed by a ligand-to-metal electron transfer to get Mn(II)TTEG-2-PyP(4+) and the free radical derived from HU (HU˙). Nitric oxide (NO) and nitroxyl (HNO) are minor intermediates. The major pathway for the formation of the most significant intermediate, the {MnNO} complex of Mn(II)TTEG-2-PyP(4+), is the reaction of Mn(II)TTEG-2-PyP(4+) with NO. We have confirmed that the autoxidation of the intermediates opens alternative reaction channels, and the process finally yields NO(2)(-) and the initial Mn(III)TTEG-2-PyP(5+). The photochemical release of NO from the {MnNO} intermediate was also studied. Kinetic simulations were performed to validate the deduced rate constants. The investigated reaction has medical implications: the accelerated production of NO and HNO from HU may be utilized for therapeutic purposes.  相似文献   

5.
Maeda C  Shinokubo H  Osuka A 《Organic letters》2007,9(13):2493-2496
Pd-catalyzed annulation reaction of meso-hexynyl Zn(II) porphyrin with 4-amino-3-iodopyridine efficiently provides meso-3-(5-azaindolyl)-substituted Zn(II) porphyrin as a major product, which assembles to form a slipped cofacial dimer by the complementary coordination of the pyridine moiety to the Zn(II) center. 2-iodoaniline and 2-iodophenol also undergo this [3 + 2] annulation with the meso-hexynyl Zn(II) porphyrin to furnish meso-indolyl- and benzofuranyl-substituted Zn(II) porphyrins, respectively.  相似文献   

6.
The major reaction center in the reaction of 4,4-dialkyl-5-methylene-2-phenyliminothiazolidines with acid chlorides or anhydrides and with arenesulfonyl chlorides is the nitrogen atom at position 3 of the ring.Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 12, pp. 2968–2970, December, 1996.  相似文献   

7.
The reaction of TiF4 with PhP(O)[CH2C(O)NMe2]2 in CH2Cl2 has been studied by 19F NMR spectroscopy. It has been found that the major reaction products are chelate tetrafluoro complex (η2-L)TiF4 where the ligand is coordinated to the titanium ion through the P=O and C=O groups and cis-TiF4(ОР···L)2 where both ligands are coordinated to the central ion through the more basic P=O groups. Spectral features of the tetrafluoro chelate have been studied, which have been attributed for the first time to the appearance of a chiral center at chelate coordination. The character of manifestation of conformational isomerism of the chelate ring and chiral center in the chelating ligand in mixed octahedral complexes of d0 transition metal fluorides in 19F NMR spectra is discussed.  相似文献   

8.
The first example of organocatalyzed γ′‐selective functionalization of cyclic enones with 3‐substituted maleimides results in the stereoselective construction quaternary carbon center is presented. The reactions provided γ′‐functionalized cyclic enones and β‐functionalized cyclopentenones in good to excellent yields with excellent diastereo‐ and enantioselectivities. DFT calculations indicated that the reaction might proceed as a [4+2] cycloaddition/retro‐Mannich reaction which could explain the unexpected product with a chiral quaternary carbon center and the excellent stereoselectivity.  相似文献   

9.
2-Alkylmercapto-4-hydroxy-3,4,5,6-tetrahydro- and 2-alkylmercapto-3,6-dihydropyrimidines were synthesized by the reaction of substituted 4-hydroxyhexahydro- and 1,2,3,6-tetrahydropyrimidine-2-thiones with alkyl halides. It is shown that the nucleophilic center in the alkylation is the sulfur atom. The capacity of the synthesized compounds for prototropic ring-chain tautomerism was established.  相似文献   

10.
The reaction of N-heterocyclic carbene, L:, with BeCl(2) quantitatively yields L:BeCl(2)1 (L: = :C{N(2,6-Pr(i)(2)C(6)H(3))CH}(2)). The carbene-stabilized beryllium borohydride monomer L:Be(BH(4))(2)2 is prepared by the reaction of 1 with LiBH(4). Compound 3, prepared by the reaction of 2 with Na(2)[Fe(CO)(4)]·dioxane, represents an unusual "dual reduction" of the imidazole ring (i.e., hydroboration of the C═C backbone and hydrogenation of the C2 carbene center).  相似文献   

11.
The reaction of alkynes 1 with CO and pyridin-2-ylmethylamine (2) in the presence of Rh4(CO)12/P(OEt)3 results in the incorporation of two molecules of CO leading to maleimide derivatives 3. The coordination of the pyridine nitrogen in 2 to a rhodium center is essential for the reaction to proceed.  相似文献   

12.
The Lewis acid-promoted reactions of chiral 2-aryl-3-azido-1-propanols with 4-substituted cyclohexanones lead to iminium ethers and ultimately caprolactams (following a hydrolysis step). In this study, it is shown that these reactions afford variable ratios of products, depending on the electronic nature of the phenyl group. These results are interpreted in the context of a cation-pi stabilizing effect in the product-determining reaction intermediate. Remarkably, the best selectivity was obtained when an azidopropanol reagent containing a quaternary center was used; a control experiment showed that the high selectivity observed in this result depended upon the free rotation of the pseudoaxial aromatic group in the intermediate that affords the major product.  相似文献   

13.
采用RRKM理论和疏松过渡态模型计算了N(4S)+CH2X(X=F,Cl)反应的微正则速率常数和通道分支比.计算结果表明,在较低的内能下(E=280.29 kJ/mol), N(4S)+CH2F的主要产物为NCHF+H,占总产物的59.2%,次要产物为H2CN+F,占37.4%.而N(4S)+CH2Cl反应在E=267.78 kJ/mol时,主要产物是H2CN+Cl,占90.3%, NCHCl+H只占9.0%.在内能较高的时候(取E=500.00 kJ/mol), N(4S)+CH2F的主要通道并未变化,而N(4S)+CH2Cl的主要通道变为NCHCl+H,比例为51.5%, H2CN+Cl的比例降到40.4%.  相似文献   

14.
Zhao SB  Wang RY  Wang S 《Inorganic chemistry》2006,45(15):5830-5840
Five Cu(I) complexes [Cu2(ttab)(CH3CN)2][BF4]2 (1), [Cu(2)(ttab)(PPh3)2][BF4]2 (2), [Cu2(ttab)I2] (3), [Cu2(ttab)(I3)2] (4), and [Cu2(ttab)(I)BF4]n (5) with 1,2,4,5-tetra(7-azaindolyl)benzene (ttab) have been synthesized and characterized. The structures of compound 1, 2, 4, and 5 have been determined by single-crystal X-ray diffraction analyses, which established that 1, 2, and 4 are discrete dinuclear Cu2 compounds while compound 5 is a 1D coordination polymer with the I- ligand bridging two dinuclear Cu2 units. The ttab ligand in all four complexes adopts a 1,3-chelation mode. The Cu(I) center in all complexes is three-coordinate. Close contact between the Cu(I) center and the benzene ring in the ttab ligand was observed in all four structures, which is believed to play a role in stabilizing the three-coordinate geometry of the Cu(I) center. The crystals of 1, 2, and 5 contain channels in the lattice that host solvent molecules such as CH2Cl2 and toluene. Fluorescent measurements established that, in solution, compounds 1-3 display weak blue luminescence which originates from the ttab but is significantly red-shifted and has a much lower emission intensity, compared to the free ttab ligand. The application of compound 1 in C-N cross-coupling reactions was examined by using the reaction of phenyl halides with imidazole as a model system. For the reaction with phenyl iodide, 1 was found to be as effective a catalyst as the CuI/1,10-phenanthroline system. For the reaction with phenyl bromide, 1 is less effective than the CuI/1,10-phenanthroline system. Compound 1 reacts with O2 gas, as established by UV-vis spectra, but the oxidized products have not been characterized.  相似文献   

15.
Palladation of C2-protected diimidazolium salts with Pd(OAc)2 afforded complexes comprising C4-bound N-heterocyclic dicarbene ligands. The reactivity of these complexes towards Lewis acids (AgBF4, AgOAc) and Br?nsted acids (H2SO4, H3PO4, HOAc) revealed that abnormal C4 bonding of the carbenes markedly increases the nucleophilicity of the coordinated palladium center as compared to C2 bonding. Despite its formal +2 charge, the palladium center in these complexes is best described as a Lewis base. The abnormal carbene bonding mode induces new reaction patterns such as the formation of a Pd-Ag adduct. Based on metallation studies including the palladation of a dissymmetric diimidazolium salt, a rationale for the selective activation of the C4-H bond in the diimidazolium precursor salts is proposed.  相似文献   

16.
The reactivity of the enamino compounds 4-amino-3-phenylamino(thio)carbonyl-3-penten-2-one 1 and 2 and ethyl 3-amino-2-phenylamino(thio)carbonyl-2-butyrate 7 and 8 was studied using the reaction with hydrazine hydrate and hydrazine hydrochloride to evaluate the 1,3 electrophilic center of the compounds by the formation of the pyrazole rings. The pyrazoles 3, 4, 5, 9, 11 and 13 were obtained depending on the reaction conditions employed.  相似文献   

17.
报道了用H_2Fe(CO)_4制备trans-Fe(CO)_3(PR_3)_2的新的羰基取代反应。在 过量质子存在下,H_2Fe(CO)_4中的羰基被活化,中心铁原子对膦的亲核进攻更为 敏感。在这种条件下H_2Fe(CO)_4与膦反应时,首先失去氢生成Fe(CO)_4(PR_3), Fe(CO)_4-(PR_3)再与第二个膦反应可高产率的得到trans-Fe(CO)_3(PR_3)_2。用 PPh_3与Fe(CO)_4(PPh_3)在过量质子存在下反应生成trans-Fe(CO)_3(PR_3)_2,证 实了上述过程。  相似文献   

18.
邹世辉  李志年  周秋月  潘洋  袁文涛  贺磊  王申亮  文武  刘娟娟  王勇  杜永华  杨玖重  肖丽萍  小林久芳  范杰 《催化学报》2021,42(7):1117-1125,中插16-中插20
天然气作为一种低碳清洁能源,其储量大,价格低,被认为是最有前途的石油替代资源之一.而以天然气的主要成分——甲烷为原料来生产高价值化学品被认为是石化工业中实现天然气取代石油为原料新化工路线的技术基础,具有极为可观的社会经济价值.目前甲烷的化学利用主要采用间接转化法,即先从甲烷制合成气,再由合成气制备各种化工原料和油品.但该路线流程复杂,能耗大,生产成本高及投资大,具有明显的局限性,这促使着人们不断探索能量效率更高的甲烷直接转化技术.甲烷氧化偶联(OCM)是最重要的甲烷直接转化技术之一.自1982首次报道以来,人们开发了1000多种OCM催化剂,涉及元素超过68种,但C2烃类(乙烷和乙烯)的收率普遍低于30%,尚未实现工业化.传统研究认为,OCM反应遵循“多相-均相”催化反应机理,甲烷在催化剂表面活化产生甲基自由基后,在气相中进行偶联生成乙烷和乙烯等产物.由于高温下甲基自由基很容易脱附到气相,传统的OCM催化剂一般只在甲基自由基的产生这一步发挥作用.而随后在气相中发生的甲基自由基均相反应并不受催化剂控制,在热力学驱动下,会倾向于深度氧化生成CO2等副产物,因此OCM反应中C2的收率上限为25%–28%.理论上来说,只有当催化剂能够在甲基自由基偶联这一步发挥作用时,C2物种的收率才可能打破上限,但目前尚未有催化剂实现甲基自由基可控表面偶联.本文提出并证实5wt%Na2WO4/SiO2(5NaWSi)具有催化甲基自由基表面偶联的能力.在低温下,5NaWSi本身对于OCM没有催化活性,但是它的加入能够显著提高La2O3催化剂的C2选择性,进而提高C2收率,使其在570℃的低温下即可达到10.9%的C2收率.在La2O3和5NaWSi之间加入一层甲基自由基淬灭剂——石英砂,这种提升作用随即消失,表明甲基自由基在5NaWSi上的表面偶联可能是C2选择性和收率提升的主要原因.本文进一步采用同步辐射光电离质谱技术原位检测了反应过程中的自由基中间体,结果发现,La2O3表面产生的甲基自由基确实可以在5NaWSi表面进行偶联,进而提高C2的选择性和收率.通过对5NaWSi的组成和结构进行分析,发现5NaWSi中的Na2WO4纳米团簇可能是甲基自由基偶联的活性位点,该位点不仅具有很强的甲基自由基吸附能力,为甲基自由基表面偶联提供机会,同时不会深度氧化C2物种,有效地提高了C2选择性.以此为基础建立理论模型,我们通过DFT计算对甲基自由基在5NaWSi表面的偶联机制进行了研究.结果表明,5NaWSi对甲基自由基具有很强的吸附能力,而吸附后的甲基自由基更倾向于偶联生成C2产物,而不是β-H消除生成HCHO等副产物,表明5NaWSi确实是很好的甲基自由基表面偶联催化剂.甲基自由基表面偶联的证实为OCM催化剂的开发开辟了新方向.从双功能催化剂设计的角度出发,将OCM反应分解成甲烷活化和甲基自由基偶联这两个部分,并分别针对这两个部分来筛选和优化催化剂,将有望突破C2收率上限,进而推进OCM的工业化进程.  相似文献   

19.
The reaction of TaCl5 with a single equivalent of Cl3P=NSiMe3 resulted in the isolation of the perhalogenated (phosphoraniminato) tantalum(V) complex TaCl4(N=PCl3) (1). Reaction of 1 with an excess of THF and subsequent cooling produced crystals of TaCl4(N=PCl3)(THF) (1.THF), which possesses a distorted octahedral Ta center with a THF molecule coordinated trans to the phosphoraniminato ligand. The reaction of 1 with the aminophosphoranimine, (Me3Si)2NPCl2=NSiMe3, resulted in a [3 + 1] cyclocondensation reaction to form the metallacyclic complex, TaCl3(N=PCl3)[N(SiMe3)PCl2N(SiMe3)] (2), which contains a TaNPN four-membered ring and a phosphoraniminato ligand (N=PCl3). The analogous [3 + 1] cyclocondensation reaction between (Me3Si)2NPCl2=NSiMe3 and TaCl5 led to the isolation of TaCl4[N(SiMe3)PCl2N(SiMe3)] (3). An attempt to cleave the NPN ligand from the Ta center in 2 via protonolysis with HCl led to an unusual phosphoraniminato ligand coupling reaction to yield the novel phosphazenium salt [N(PCl2NH2)2][TaCl6] (4). All new compounds (1.THF and complexes 1-4) were characterized by single-crystal X-ray diffraction.  相似文献   

20.
We present a theoretical analysis of the role of the natural chirality of the sugar ring ( D-enantiomeric form) in the peptide synthesis reaction in ribosome. The study is based on a model from the crystal structure of the ribosomal subunit of Haloarcula marismortui using hybrid quantum mechanical-molecular mechanical method. The result indicates that the natural heterochiral sugar-amino acid combination ( D: L) is most favorable for the formation of the peptide bond within the structure of peptidyl transferase center (PTC). Other possible combinations of unnatural chiral form of the sugar-amino acid pair are unfavorable to perform the reaction within the PTC. The presence of the sugar ring has favorable influence on the rotatory path. The chirality of the 2' carbon of the sugar ring is vital for the peptide synthesis. Alteration of the stereochemistry or removal of chirality at the 2' center makes the rate as several orders slower in magnitude. This is in agreement with the recent experimental result that the replacement of the 2' OH by H or F reduces the rate by several orders of magnitude. Two different mechanisms for the catalytic effect of the stereochemistry of 2' OH are investigated. In one mechanism, the 2' OH is involved in proton shuttle, and in the second mechanism, the OH group acts as an anchoring group. The transition state barriers of both mechanisms are found to be comparable. The natural chirality of the 2' center helps lowering the transition state barrier height of the reaction substantially compared with the cases where the 2' center is made achiral or with altered chirality. Thus, the stereochemistry of the 2' center has a major role in synthesis. Few surrounding residues like U2620, A2486, G2618, and C2487 have favorable influence on rotatory path, while the residues like U2541, C2104, C2105, A2485, C2542, C2608, U2619, and A2637 have little influence. The present study shows that the natural chirality of the sugar ring and amino acid makes a perfect heteropair within the PTC to carry out peptide synthesis with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号