首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu Y  Bruneau A  He J  Abliz Z 《Organic letters》2008,10(5):765-768
Highly efficient syntheses of donor-acceptor [2]catenanes were developed using a combination of templation and reversible metal-ligand coordination. The desired [2]catenanes were obtained within minutes through a five-component assembly, involving a donor-containing crown ether, an acceptor-containing ligand, two Pd(II) metal centers, and a dipyridyl ligand. The [2]catenane formation was characterized by 1H NMR and UV-vis spectroscopies and cold-spray ionization mass spectrometry. In particular, great translational selectivity was observed when a crown ether with two different donor units was employed.  相似文献   

2.
A subset of mechanically interlocked molecules, namely, donor-acceptor [2]catenanes, have been produced in aqueous solutions in good yields from readily available precursors. The catenations are templated by strong hydrophobic and [π···π] stacking interactions, which serve to assemble the corresponding supramolecular precursors, prior to postassembly covalent modification. Dynamic (1)H NMR spectroscopic investigations performed on one of these [2]catenanes reveal that the pirouetting motion of the butadiyne-triethylene glycol chain occurs with a dramatically lower activation enthalpy, yet with a much higher negative activation entropy in water, compared to organic solvents. The preparations of mechanically interlocked molecules in water constitute the basis for the future development of complex functional molecular machinery in aqueous environments.  相似文献   

3.
4.
A metal-directed self-assembly of [3]catenanes in combination with pi-pi interactions was investigated. Ligands based on 4,4'-bipyridinium or 2,7-diazapyrenium were used in conjunction with dioxoaryl cyclophanes (4-6) and trans-PdCl2(CH3CN)2. The [3]catenanes show a dinuclear palladium 46-membered metallomacrocycle interlocked by two pi-complementary dioxoaryl macrocycles. [structure: see text].  相似文献   

5.
Four donor-acceptor [2]catenanes with cyclobis(paraquat-p-phenylene) (CBPQT4+) as the pi-electron-accepting cyclophane and 1,5-dioxynaphthalene (DNP)-containing macrocyclic polyethers as pi-electron donor rings have been synthesized under mild conditions, employing Cu+-catalyzed Huisgen 1,3-dipolar cycloaddition and Cu2+-mediated Eglinton coupling in the final steps of their syntheses. Oligoether chains carrying terminal alkynes or azides were used as the key structural features in template-directed cyclizations of [2]pseudorotaxanes to give the [2]catenanes. Both reactions proceed well with precursors of appropriate oligoether chain lengths but fail when there are only three oxygen atoms in the oligoether chains between the DNP units and the reactive functional groups. The solid-state structures of the donor-acceptor [2]catenanes confirm their mechanically interlocked nature, stabilized by [pi...pi], [C-H...pi], and [C-H...Omicron] interactions, and point to secondary noncovalent contacts between 1,3-butadiyne and 1,2,3-triazole subunits and one of the bipyridinum units of the CBPQT4+ ring. These contacts are characterized by the roughly parallel orientation of the inner bipyridinium ring system and the 1,2,3-triazole and 1,3-butadiyne units, as well as by the short [pi...pi] distances of 3.50 and 3.60 A, respectively. Variable-temperature 1H NMR spectroscopy has been used to identify and quantify the barriers to the conformationally and co-conformationally dynamic processes. The former include the rotations of the phenylene and the bipyridinium ring systems around their substituent axes, whereas the latter are confined to the circumrotation of the CBPQT4+ ring around the DNP binding site. The barriers for the three processes were found to be successively 14.4, 14.5-17.5, and 13.1-15.8 kcal mol-1. Within the limitations of the small dataset investigated, emergent trends in the barrier heights can be recognized: the values decrease with the increasing size of the pi-electron-donating macrocycle and tend to be lower in the sterically less encumbered series of [2]catenanes containing the 1,3-butadiyne moiety.  相似文献   

6.
Two redox-active bistable [2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were obtained by donor-acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable [2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor-acceptor interactions between the CBPQT(4+) ring and DNP, or (ii) radical-radical interactions between CBPQT(2(?+)) and BIPY(?+), respectively. The switching processes, as well as the nature of the donor-acceptor interactions in the ground states and the radical-radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic (1)H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the [2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical-radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature (1)H NMR spectroscopy reveals a degenerate rotational motion of the BIPY(2+) units in the CBPQT(4+) ring for both of the two [2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol(-1) for the larger catenane and 17.0 kcal mol(-1) for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY(2+) units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor-acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical-radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY(?+) radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical-radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.  相似文献   

7.
A [2]catenane in which the macrocyclic polyether, bisparaphenylene[34]crown-10, is interlocked with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is shown by dynamic (1)H NMR spectroscopy, using (i). neutral and (ii). anionic chiral shift reagents (CSRs), to exist at low temperatures (197 K) in acetone-d(6) solutions as 1:1 and 2:1 mixtures of diastereoisomeric complexes and salts, respectively, as a consequence of the helical chirality associated with the [2]catenane interacting with the CSRs.  相似文献   

8.
A series of novel calix[4]arenocrowns 1a-c were efficiently synthesized by a one-pot reaction of calix[4]monohydroquinone diacetate 5 with ditosylate 6 and its analogues in the presence of sodium hydroxide. It was found that the calix[4]arenocrowns could form stable pseudorotaxane-type complexes 2a-c with paraquat, and further self-assemble into calix[4]areno[2]catenanes 3a-c with dicationic salt 8 and p-bis(bromomethyl)benzene.  相似文献   

9.
Two [2]catenanes incorporating bispyrrolotetrathiafulvalene (BPTTF) and weaker aryl donors, hydroquinone (HQ) and 1,5-dioxynaphthalene (DNP), respectively, have been prepared and characterized. These [2]catenanes show a predominant amount (>95:5) of the co-conformation in which either the HQ or the DNP unit is encircled by a tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+), contrary to what is observed in systems based on the parent tetrathiafulvalene (TTF). These new [2]catenanes act effectively as molecular switches which are always configured in the "on" state.  相似文献   

10.
Starting from the versatile 4-bromopyrido[24]crown-8 building block, novel ditopic and tritopic receptors have been synthesized and shown to be appropriate hosts for bis(4-formylbenzyl)ammonium hexafluorophosphate. Association constants (per binding site) for the corresponding [3]- and [4]pseudorotaxanes, assembled from these components, were determined to be 2753  M?1 and 723  M?1, respectively. Mechanical bond formation was attempted utilizing dynamic imine bond formation between the formyl groups of the bound dibenzylammonium threads and p-phenylenediamine.  相似文献   

11.
Manav Gupta 《Tetrahedron letters》2008,49(18):2946-2950
A [3]catenane with peripheral olefinic macrocycles was conveniently synthesized via a double ring-closing olefin metathesis. Highlights of this work include the synthesis of a 65-membered macrocycle featuring two phenanthroline ligands, a Cu(I)-templated synthesis of a [3]pseudorotaxane, and the key double ring-closing olefin metathesis to afford the desired [3]catenane in 71% yield.  相似文献   

12.
A series of neutral porphyrin-containing catenanes has been synthesised, consisting of a zinc porphyrin strapped by a polyethylene glycol chain containing four or six ethylenoxy-units and incorporating a central naphthoquinol unit, interlinked with a naphthalene diimide macrocycle. The napthalene diimide precursor units exhibit only weak binding with the strapped porphyrins (Ka between 8 and 0.02 M(-1)), but good yields of the catenanes were obtained by Glaser coupling of the alkynyl napthalene diimide precursors in the presence of the porphyrins. Structures and solution conformations were determined by mass spectral and detailed 1H NMR studies. For the longer strapped porphyrins, the diimide macrocycle rotates around the central naphthoquinol unit at 420-450 times per second, while rotation is virtually prevented in the tighter strapped derivatives. A second dynamic process occurring in both sets of catenanes and described as 'yawing' leads to inequivalence in the naphthalene moieties. UV-Visible spectra indicate charge transfer interactions and electronic communication between the two components of the catenane.  相似文献   

13.
Ikeda T  Higuchi M  Sato A  Kurth DG 《Organic letters》2008,10(11):2215-2218
A series of the thiophene donor-acceptor [2]rotaxanes have been synthesized based on the inclusion complexes of cyclobis(paraquat- p-phenylene) (CBPQT4+) with thiophene, bithiophene, and terthiophene. The maximum wavelength of the charge-transfer band strongly depends on the number of thiophene units, while the association constant does not. These donor-acceptor pairs will be fascinating constituents for optoelectronic and electromechanical materials.  相似文献   

14.
[reaction: see text] A guest molecule-a bis-N-tetraethyleneglycol-substituted 3,3'-difluorobenzidine derivative-has been synthesized, and its complexation with the host, cyclobis(paraquat-p-phenylene), has been investigated. This host-guest complex was then employed in the template-directed synthesis of a blue-colored [2]rotaxane. The color of this [2]rotaxane arises from the charge-transfer absorption band between the HOMO of the guest and the LUMO of the host. This host-guest complex, and the derived [2]rotaxane, completes the donor-acceptor-based RGB (red/green/blue) color complex set.  相似文献   

15.
Bis-loop tetraurea calix[4]arene 6 has been prepared by acylation of the wide-rim calix[4]arene tetraamine 1 with the activated bis(urethane) 8 under dilution conditions. Similarly the bis(Boc-protected) tetraamine 2 is converted into the mono-loop derivative 3 which after deprotection and acylation gives the bisalkenyl derivative 5. In apolar solvents this tetraurea calix[4]arene 5 forms regioselectively a single hydrogen-bonded homodimer, from which the bis[2]catenane 10a is formed in 49% by a metathesis reaction followed by hydrogenation. Bis-loop derivative 6 forms no homodimers for steric reasons, but a stoichiometric mixture with the open-chain tetraalkenyl derivative 7a contains exclusively the heterodimer. Metathesis and subsequent hydrogenation now yields 65 % of the pure bis[2]catenane 10a which could not be isolated from the complex reaction mixture obtained from the homodimer 7a.7a. The chirality of 10a (D(2) symmetry) has been verified by optical resolution using HPLC on a chiral stationary phase.  相似文献   

16.
We report the synthesis of three donor–acceptor azido-functionalised catenanes, wherein the asymmetric positioning of the azide group on one or two of the ring components renders its resident macrocycle constitutionally asymmetric, and so it acts as an oriented ring. As a consequence, the analyses of (i) a monoazido[2]catenane, (ii) a monoazido[3]catenane and (iii) a bisazido[3]catenane, which exists as a mixture of two conditional topological isomers, are significantly complicated. Accordingly, characterisation of the catenanes, which was achieved by a combination of dynamic 1H NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction, is an arduous task. We expect that the difficulties in analysing these mechanically interlocked molecules will be encountered more frequently as chemists prepare entities with increasingly complex topologies.  相似文献   

17.
In pursuit of a neutral bistable [2]rotaxane made up of two tetraarylmethane stoppers--both carrying one isopropyl and two tert-butyl groups located at the para positions on each of three of the four aryl rings--known to permit the slippage of the pi-electron-donating 1,5-dinaphtho[38]crown-10 (1/5DNP38C10) at the thermodynamic instigation of pi-electron-accepting recognition sites, in this case, pyromellitic diimide (PmI) and 1,4,5,8-naphthalenetetracarboxylate diimide (NpI) units separated from each other along the rod section of the rotaxane's dumbbell component, and from the para positions of the fourth aryl group of the two stoppers by pentamethylene chains, a modular approach was employed in the synthesis of the dumbbell-shaped compound NpPmD, as well as of its two degenerate counterparts, one (PmPmD) which contains two PmI units and the other (NpNpD) which contains two NpI units. The bistable [2]rotaxane NpPmR, as well as its two degenerate analogues PmPmR and NpNpR, were obtained from the corresponding dumbbell-shaped compounds NpPmD, PmPmD, and NpNpD and 1/5DNP38C10 by slippage. Dynamic 1H NMR spectroscopy in CD2Cl2 revealed that shuttling of the 1/5DNP38C10 ring occurs in NpNpR and PmPmR, with activation barriers of 277 K of 14.0 and 10.9 kcal mol(-1), respectively, reflecting a much more pronounced donor-acceptor stabilizing interaction involving the NpI units over the PmI ones. The photophysical and electrochemical properties of the three neutral [2]rotaxanes and their dumbbell-shaped precursors have also been investigated in CH2Cl2. Interactions between 1/5DNP38C10 and PmI and NpI units located within the rod section of the dumbbell components of the [2]rotaxane give rise to the appearance of charge-transfer bands, the energies of which correlate with the electron-accepting properties of the two diimide moieties. Comparison between the positions of the visible absorption bands in the three [2]rotaxanes shows that, in NpPmR, the major translational isomer is the one in which 1/5DNP38C10 encircles the NpI unit. Correlations of the reduction potentials for all the compounds studied confirm that, in this non-degenerate [2]rotaxane, one of the translational isomers predominates. Furthermore, after deactivation of the NpI unit by one-electron reduction, the 1/5DNP38C10 macrocycle moves to the PmI unit. Li+ ions have been found to strengthen the interaction between the electron-donating crown ether and the electron-accepting diimide units, particularly the PmI one. Titration experiments show that two Li+ ions are involved in the strengthening of the donor-acceptor interaction. Addition of Li+ ions to NpPmR induces the 1/5DNP38C10 macrocycle to move from the NpI to the PmI unit. The Li+-ion-promoted switching of NpPmR in a 4:1 mixture of CD2Cl2 and CD3COCD3 has also been shown by 1H NMR spectroscopy to involve the mechanical movement of the 1/5DNP38C10 macrocycle from the NpI to the PmI unit, a process that can be reversed by adding an excess of [12]crown-4 to sequester the Li+ ions.  相似文献   

18.
We present the rational design and anion-binding properties of the first anion-templated pseudorotaxanes and catenanes in which the "wheel" component is provided by a calix[4]arene macrobicyclic unit. The designs and syntheses of two new calix[4]arene macrobicycles, 2 and 3, are presented, and the abilities of these new species both to bind anions and to undergo anion-dependent pseudorotaxane formation are demonstrated. Furthermore, it is shown that performing ring-closing metathesis reactions on some of these pseudorotaxane assemblies gives novel catenane species 14 and 15, in which the yield of interlocked molecule obtained is critically dependent on the presence of a suitable anion template, namely, chloride. Exchange of the chloride anion in catenane 14 a for hexafluorophosphate gives catenane 14 d, which contains a unique anion-binding domain defined by the permanently interlocked hydrogen-bond-donating calix[4]arene macrobicycle and pyridinium macrocycle fragments. The anion-binding properties of this domain are presented, and shown to differ from non-interlocked components.  相似文献   

19.
Donor-acceptor cyclopropanes activated with Me3SiOTf cleave to reactive intermediates that can be efficiently intercepted by nitriles in a formal [3 + 2] dipolar cycloaddition reaction. Aliphatic, aromatic, and alpha,beta-unsaturated nitriles are excellent reaction partners, giving synthetically useful 2H-3,4-dihydropyrrole cycloaddition products in high yield.  相似文献   

20.
A bis-phenanthroline [2]catenane copper complex, consisting of one olefinic macrocycle and one nonolefinic macrocycle, underwent an entropy-driven ring-opening olefin metathesis polymerization (ROMP) to provide a polypseudorotaxane. The polymerization featured an average degree of polymerization of ca. 63 wherein the polymer was effectively saturated with threaded macrocycles. Removal of the copper led to near complete release of the macrocycles from the polymer backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号