首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two glasses based on lithium disilicate (LS2), with and without fluorapatite (FA), were synthesised in the Li2O-SiO2-CaO-P2O5-CaF2 system with P2O5: CaO: CaF2 ratios corresponding to fluorapatite. Glass-ceramics have then been prepared by thermal treatment. The mechanism and kinetics of crystallization as functions of grain size and rate of heating were investigated using thermal analysis methods. The smaller particles crystallize preferentially by surface crystallization, which is replaced by volume crystallization at larger particle sizes. Inclusion of FA in the LS2 favours crystallization through the surface mechanism. The onset limit for volume crystallization replacing the surface mechanism is at about 0.3 mm for pure LS2 glass and 0.9 mm for glass containing FA. The calculated activation energies of the glasses (299 ± 1 kJ mol-1 for pure LS2 glass and 288 ± 7 kJ mol−1 for glass containing FA according to Kissinger, or 313 ± 1 kJ mol-1 for pure LS2 glass and 303 ± 8 kJ mol-1 for glass containing FA according to Ozawa) indicate that the tendency of the glasses to crystallize is supported by the FA presence. Bioactivity of all samples has been proved in vitro by the formation of new layers of apatite-like phases after soaking in SBF.   相似文献   

2.
The partial substitution of CaF2 for CaO in the Na2O–CaO–SiO2–P2O5 system was conducted by the sol–gel method and a comparison of the glass–ceramic properties was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass–ceramic properties were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometer and so on, and the bioactivity of the glass–ceramic was evaluated by in vitro assays in simulated body fluid. Results indicate that with the partial substitution of CaF2 for CaO in glass composition, the volume density, apparent porosity, bending strength and microhardness of the glass–ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization which does not inhibit the glass–ceramic bioactivity.  相似文献   

3.
The thermodynamic properties of some solid solutions in the CaOZrO2 system have been investigated by using solid electrolyte galvanic cells of the type: O2, Pt|CaO, CaF2|CaF2 (tF = 1)| δCaO(1 ? δ)ZrO2, CaF2|Pt, O2. The influence of CaF2 added in electrodes on the thermodynamic equilibrium was investigated. It was shown that the heterogeneous field with cubic solid solution reaches the composition x = 0.17 mole of CaO. The results indicate that addition of ZrO2 to the saturated solid solution produces a significant decrease in the activity of CaO. Measured data were used to calculate thermodynamic parameters of reactions with saturated solid solutions Ca0.17 Zr0.83 O1.83, ZrO2, and CaZrO3. At temperatures below 820°C, saturated solid solutions have a tendency to decompose into CaZrO3 and ZrO2. A comparison of the thermodynamic results with available data on phase relationships in the CaOZrO2 system is presented. High thermodynamic stability of SrZrO3 and BaZrO3 is one of the reasons for the absence of cubic solid solutions in the system MeOZrO2 (MeSr, Ba).  相似文献   

4.
The distribution of Q-units of CaO–P2O5 glasses was described by the thermodynamic model of Shakhmatkin and Vedishcheva. The glass was considered as the ideal solution of CaO, P2O5, CaP2O6, Ca2P2O7, and Ca3P2O8. In the first step, molar Gibbs energies of considered species were taken from the FACT thermodynamic database. The obtained result was compared with 31P solid-state NMR study of Roiland. It was shown that the calculated values were in fairly good agreement with the experimental values. After that, the nonlinear regression treatment was used for optimization of molar Gibbs energies by minimizing the sum of squares of deviations between experimental and calculated Q-distribution. In such a manner, the non-ideality of the system was reflected. In the studied case, no significant improvement of obtained results was achieved by this procedure—thus, the ideal solution assumption included in the thermodynamic model of Shakhmatkin and Vedishcheva holds very well for the studied binary glasses.  相似文献   

5.
The structures of binary xCaO · (100 ? x)SiO2 glasses with x = 10, 20 and 30 mol-% and ternary (20 ? x)CaO · xP2O5 · 80SiO2 glasses with x = 3, 10, 15, 17 and 20 mol-% have been studied by means of classical molecular dynamics simulations using both the melt-quenched and the sol–gel protocols. The structural picture derived correlates the bioactive behaviour to the combined effects of the connectivity of the extended silicate network and to the tendency to form (or not to form) non-homogeneous domains. In this context, a mathematical relationship that relates the Ca/P ratio in the Ca phosphate micro-segregation zones to the P2O5 content in ternary glasses has been developed and this has been used to fine-tuning the optimum amount of P in a glass for its highest in vitro bioactivity. The composition with optimal Ca/P ratio, 80Si–14.8Ca–5.2P, has been synthesized and the results of bioactivity tests have confirmed the prediction.  相似文献   

6.
Phase relations in the CaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and differential thermal analyses, and the isothermal section at 600°C has been constructed. The formation of ternary compounds at the component ratios 1CaO: 1Bi2O3: 1B2O3 (CaBi2B2O7) and 1CaO: 1Bi2O3: 2B2O3 (CaBi2B4O10) has been established X-ray diffraction characteristics of these phases are presented.  相似文献   

7.
Two series of glasses have been prepared and characterized. One with varying Li2O/P2O5 ratio and the other with varying Mo/P ratio. The relationship between the formation of the reduced state of molybdenum in phosphate glasses and the type of gases released in heating batch materials has been investigated. Effect of temperature on the valence state of molybdenum is also studied. Oxidation-reduction (redox) equilibrium of Mo5+/Mo6+ and environment of molybdenum (V) in these series of lithium-molybdenum-phosphate glasses are related to the glass composition and the possible structural units formation in the glasses.  相似文献   

8.
The ternary system Y2O3?CaO?P2O5 has been examined by DTA, X-ray diffraction, IR and microscopic methods. Its phase diagram has been provided within the composition range YPO4?Ca3(PO4)2?P2O5. The occurrence of four mixed phosphates: Ca3Y(PO4)3, CaYP3O10, CaY(PO3)5, Ca2Y(PO3)7 has been discovered in the system. Basic X-ray data have been determined for these newly discovered compounds and several methods of their synthesis developed.  相似文献   

9.
Alkali phosphomolybdate glasses have been prepared by quenching melted mixtures of P2O5, MoO3 and A2O(A=Li, Na). The composition dependence of the transition temperature of glasses belonging to ternary A2O–(MoO3)2–P2O5 (A=Li, Na) systems is studied for several series of glasses corresponding to either a fixed A2O rate or a constant Mo/P ratio. The interpretation of the results is based on the presence of different types of molybdenum and phosphorous structural groups and P–O–M (M=P, Mo) linkages in glasses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Thermal behaviour and structure of glasses from the SiO2–P2O5–K2O–MgO–CaO system modified by Fe2O3 addition were studied by DSC, XRD and FTIR methods. It has been found that the replacement of MgO and CaO modifiers by Fe2O3 in the structural network of silicate–phosphate glass results in decrease of the glass transition temperature (T g) and heat capacity change (ΔC p) accompanying the glass transformation. Simultaneously, the ability for crystallization, its course and the type of the forming phases depend on the relative proportions between iron and phosphorus as components forming the silicate–phosphate structure. The type of the crystal phases forming in the course of heating the considered glass has been found to be in agreement with the character of the domains occurring in this glass, confirmed by FTIR examinations.  相似文献   

11.
The sol-gel synthesis of silicophosphate gels using phosphoryl chloride and tetraethoxysilane as molecular precursors is reported and discussed. Gel-derived glasses and films having the molar compositions 10P2O5 · 90SiO2 and 30P2O5 · 70SiO2 have been obtained. The structure of the dried gels as well as the structural modifications that occurs during the transformations in gel-derived glasses are analyzed by Fourier transform infrared spectroscopy (FTIR). It has been found that the evidence of the P—O—Si linkages begins to appear only on the FTIR spectra of the bulk gels heat treated up to 400°C while they are well resolved on the FTIR spectra of the bulk gel samples heated up to 1000°C indicating that at this temperature the transformation in the corresponding gel-derived glasses occurs. The humidity sensitive properties of the gel-films have been evaluated by electrochemical impedance spectroscopy (EIS). The phosphorous content as well as the temperature of the heat treatments strongly affect the sensitivity to RH of the gel-derived films.  相似文献   

12.
This article establishes the relationship between the chemical composition, temperature and viscosity of glasses obtained from the four sludge treatment plants of urban and industrial wastewater from the Nile Delta in Egypt. In order to determine the working conditions of these glasses and their growth temperature, different techniques have been used: differential thermal analysis, hot stage microscopy and dilatometry. We used a prototype of hot stage microscopy, with the help of an image analysis programme developed in the present study. The chemical composition of major oxides sludge ranging from: SiO2 (36–48 wt%), Al2O3 (9–16 wt%), CaO (5–25 wt%), P2O5 (1.5–11 wt%), and Fe2O3 (~9 wt%), this composition is close to a basalt rock, being necessary to incorporate some raw materials to adjust it to the basalt rock that has a good viscosity-temperature curve. The glass transition temperatures of the four glasses obtained vary between 650 and 725 °C and the growth occurs between 938 and 1,033 °C. We also obtained the viscosity–temperature curves with the aid of the hot stage microscopy that has allowed us to determine the working temperatures of the four glasses, ranging from 926 to 1,419 °C, depending on the type of forming process used.  相似文献   

13.
The effects of alumina and CaF2 content on the crystallization behavior, fluorine loss, phase separation mechanism and optical properties of oxyfluoride glass ceramics were investigated. Three series of glasses in which their SiO2/Al2O3 ratio was different such as 1.8, 2.18 and 2.5 were examined. Results showed that the adopted ratios played key role significantly in the mechanism of phase separation of the glass. It modified from spinodal decomposition to nucleation and growth by decreasing the mentioned ratio.UV spectroscopy showed that owing to the small size of precipitated CaF2 crystals, i.e. 20 nm, in the glass with a silicon oxide to alumina ratio of 2.18 and initial CaF2 amount of 35 mol%, it remained transparent after heat treatment at 740 °C.  相似文献   

14.
The desulphurization of a carbon-saturated Fe-Si-S alloy by CaO and CaO-7.5% CaCl2 slags at 1300 °C, and by CaO-10% CaF2 and CaO-7.5% CaCl2 slags at 1450 °C were investigated. The results indicated that the addition of 7.5% CaCl2 to CaO improved the desulphurization of the carbon-saturated Fe-Si-S alloy at 1300 °C by forming a liquid reaction surface. X-ray diffraction studies on the reaction surface of CaO showed that solid CaS formed on the lime surface. This solid reaction product reduces the transfer of sulfur to the CaO surface. At 1450 °C, CaO-10% CaF2 and CaO-7.5% CaCl2 slags contain both liquid and solid phases. X-ray diffraction studies showed that a smaller amount of solid CaS formed on the reaction surface of the CaO-7.5% CaCl2 slag than on the CaO-10% CaF2 slag. The formation of a smaller amount of solid CaS and the presence of a liquid phase at the metal-slag interface enhanced the desulphurization with CaO-7.5% CaCl2 at 1450 °C.  相似文献   

15.
用高温熔融法制备了掺杂Sm2O3的CaO-CaF2-B2O3-SiO2(CFBS:Sm)发光玻璃材料, 并借助X射线衍射(XRD)谱、傅里叶变换红外(FTIR)光谱以及光致发光(PL)光谱等分析手段研究了玻璃基体中CaF2的摩尔分数及其结构、红外透过性能以及荧光性能的关系. XRD和FTIR测试表明, 玻璃基体中引入CaF2并未引起非晶结构的变化但其红外透过峰发生移动. 光谱学测试表明, CFBS:Sm发光玻璃在404 nm波长激发下出现对应于Sm3+离子位于566、603和650 nm的特征荧光峰, 其发光颜色为橙红色(x=0.531, y=0.371). 此外, 随着玻璃基体中CaF2摩尔分数的增加, CFBS:Sm发光玻璃的荧光发射强度、荧光寿命(Sm3+4G5/2能级)和荧光量子效率也表现出增大的趋势. 这种CFBS:Sm发光玻璃中荧光发射强度和荧光寿命的提高主要是由于玻璃基体中的CaF2替代CaO引起基体相互作用和声子能量降低、无辐射跃迁减弱造成的.  相似文献   

16.
Ce2O3-K2O-P2O5 ternary system has been investigated by thermoanalytical methods (DTA, DSC), powder X-ray diffraction, XPS and IR spectroscopy. The existence of three double potassium-cerium(III) phosphates has been confirmed and a new binary phosphate K4Ce2P4O15 has been found. Phase diagram and isothermal section at room temperature of the system Ce2O3-K2O-P2O5 have been presented.  相似文献   

17.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

18.
Bioactive glass was first synthesized by L. Hench in 1971. There are many studies on the properties of several metals and metal ions dopants used in the SiO2‐CaO‐P2O5 system of bioglasses, such as Ag, Cu, Zn, and Fe. A number of authors have carried out research related to the influence of silver oxide on the properties of bioglasses . However, publications on the properties of elastomer‐based composites containing bioactive glasses are relatively scarce. We have not found in the literature studies discussing how silver oxide concentration in bioglasses of the CaO‐SiO2‐P2O5‐Ag2O system affects the significant properties of a natural rubber biocomposite. In this regard, the purpose of the present work is to investigate the aforementioned influence on the properties of this type of composites, namely, vulcanization, physicomechanical, thermal, dynamic, dielectric, electric, and thermoconductive characteristics. We have established those parameters of the composites to be impacted considerably by both degree of filling with bioglass and the silver oxide content in the latter. The improvement in the composites thermostability and some of their physicomechanical performance is the most significant. The volume resistance decreases, and the thermal conductivity coefficients increase. Results from scanning electron microscopy and energy‐dispersive X‐ray (EDX) analyses have confirmed the influence of silver oxide initially on the phase composition of the bioglass, hence on the properties of the biocomposites through changes in the bioglass used as filler. The dielectric characteristics of some of the biocomposites suggest that they can be used as substrates and insulating layers in flexible antennas for short‐range wireless communications.  相似文献   

19.
Multicomponent glasses from the SiO2–P2O5–K2O–MgO–CaO–CuO system acting as slow release fertilizers were synthesized by the melt-quenching technique. The influence of CuO and P2O5 addition on the structure of glasses was evaluated by FTIR, Raman, 31P, and 29Si MAS NMR spectroscopies. The studies showed that the Cu2+ ions displacing Ca2+ ions and Mg2+ ions in the structure of glass prefer to associate with the phosphorus Q1 species, forming the Q0 species with chemically stable POCu bonds. This is accompanied by the reduction of the degree of polymerization of the phospho-oxygen sub-network, with a simultaneous increased degree of polymerization of the silico-oxygen sub-network of the silicate–phosphate glasses.  相似文献   

20.
Bioactive glasses prepared in SiO2–CaO–Na2O and P2O5 system are used as biomaterials in orthopaedic and maxillofacial surgery. Zn presents high physiological interest. It enhances physiological effects of implanted biomaterials. In this work, the thermal characteristics (T g, T c and T f) of pure bioactive glass elaborated with different amounts of CaO, Na2O in pure glass and with different amounts of introduced Zn in glass (ranging from 0.1 to 10 in mass%), were studied. The excess entropy was calculated for different compounds. Glasses were prepared by the melting process. The thermal behaviour of obtained bioactive glasses was determined using differential thermal analysis. Therefore, the glass transition (T g), the crystallization (T c) and the melting temperatures (T f) were revealed. Moreover, according to Dietzel formula, the thermal stability (TS) of the studied bioactive glasses has been calculated. The first results concerning the impact of different oxides, revealed a decrease of the TS, T g, T c and T f when the SiO2/CaO increases and revealed an increase of these thermal characteristics when the SiO2/Na2O and CaO/Na2O ratios increase. Introducing Zn into the bioactive glasses induces a decrease of T f and an increase of TS. Contrary to crystals, prepared glasses have entropy different to zero at T = 0 K and vary versus T f. The excess entropy of pure glasses and Zn-doped glasses were calculated. The significant variations were registered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号