首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specially constructed split sample probe was used to unequivocally demonstrate that gas-phase cationization occurs within the desorption plume during a matrix-assisted laser desorption/ionization experiment. Two separate samples were prepared for analysis: on side A, a mixture of poly(ethylene glycol) (PEG) 1500 analyte and 2,5-dihydroxybenzoic acid (DHB) matrix, and on side B a mixture of DHB matrix and lithium hydroxide (LiOH), the cationization reagent. Analysis of the data showed that when the ionization laser was focused on the split (so that both sides were illuminated), Li(+)-cationized PEG peaks were observed. Since the PEG analyte did not come into contact with Li(+) in either the solution or solid phase, the only possibility for the observed cationization was a reaction in the gas phase. Due to the difficulty in completely removing the adventitious cations (Na(+) and K(+)) present in DHB and on sample surfaces, gas-phase cationization could not be demonstrated to be either the only or most important mechanism operating in the MALDI experiment.  相似文献   

2.
The study of low molecular weight compounds by matrix-assisted laser desorption/ionization (MALDI) is difficult because of the presence of ions originating from the matrix in the low-m/z range. In order to resolve these problems, new matrix-free approaches were developed based on laser desorption/ionization from the surface of various materials such as graphite and porous silicon. Our work involves the use of 'desorption ionization on porous silicon mass spectrometry' (DIOS-MS) in the negative ion mode to study fatty acid compounds. The potential of the DIOS-MS technique is shown and an insight into the ionization mechanism provided.  相似文献   

3.
Six anthraquinone derivatives were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). Clear (pseudo) molecular ions were observed for all the compounds. Interestingly, for some derivatives, strong ions with double cation adduction were also recorded in the positive mode. It is remarkable that all these ions are singly charged. In this work, possible mechanisms for the double cation adduction were investigated and discussed. It appears that the double cation adduction was due to the electron deficient nature of the derivatives, and formed by taking up two singly charged cations and one electron. Substituents on the anthraquinone ring were found to have a significant effect on the double cation adduction. In contrast, no considerable influence of the acidity of MALDI matrix/solution was observed, even on the double proton adduction. Furthermore, it was demonstrated that double cation adduction might occur in the MALDI gas-phase plume. In addition to the anthraquinones, three more electron deficient compounds of different types, i.e. a perylene bisimide derivative (PB), 3,7-decanoylamino-4,8-dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione (TQ) and 6,6-phenyl C61-butyric acid methyl ester (PCBM), were also analyzed with MALDI TOF MS. The results indicate that the 'abnormal' double cation adduction might be a 'normal' phenomenon in the MALDI TOF MS analysis of many electron deficient compounds.  相似文献   

4.
An analytical method based on matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry has been developed to provide information on oligomer structure, average molecular weight, and molecular weight distributions of polydienes (e.g., polybutadiene and polyisoprene), an important class of industrial polymers. This MALDI method involves the use of all-trans-retinoic acid as the matrix, copper (II) nitrate as the cationization reagent, and tetrahydrofuran as the solvent. The incorporation of this copper salt generates Cu+ adducts with the polymer chains. It also improves the signal strength and extends the upper mass range when used with all-trans-retinoic acid, as compared to silver nitrate. With this formulation, it is demonstrated that polybutadienes of narrow polydispersity with masses up to 300,000 u and polyisoprenes of narrow polydispersity with masses up to 150,000 u can be analyzed. The upper molecular weight limit is set by the requirement of using higher matrix-to-polymer ratios with increasing polymer molecular weight, to the point where the instrument can no longer detect the small quantity of polymer present in the matrix host. It is also shown that this sample preparation generates previously unreported adduction behavior. The practical implications of this adduction behavior on polymer structural analysis, accuracy of molecular weight determination, and the upper molecular weight limit of oligomer resolution are discussed. It is illustrated that, in a linear time-lag focusing MALDI instrument, oligomer resolution can be obtained for polydienes with molecular weights up to 24,000, providing structural confirmation of the end-groups and the repeat unit. The average molecular weights of a number of polydienes of narrow polydispersity determined by MALDI are compared to those obtained by gel permeation chromatography, and discrepancies are noted.  相似文献   

5.
The applicability of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to the analysis of wax esters (WEs) was investigated. A series of metal salts of 2,5-dihydroxybenzoic acid (DHB) was synthesized and tested as possible matrices. Alkali metal (Li, Na, K, Rb, Cs) and transition metal (Cu, Ag) salts were studied. The matrix properties were evaluated, including solubility in organic solvents, threshold laser power that should be applied for successful desorption/ionization of WEs, the nature of the matrix ions and the mass range occupied by them, and the complexity of the isotope clusters for individual metals. Lithium salt of dihydroxybenzoic acid (LiDHB) performed the best and matrices with purified lithium isotopes ((6)LiDHB or (7)LiDHB) were recommended for WEs. Three sample preparation procedures were compared: (1) mixing the sample and matrix in a glass vial and deposition of the mixture on a MALDI plate (Mix), (2) deposition of sample followed by deposition of matrix (Sa/Ma), and (3) deposition of matrix followed by deposition of sample (Ma/Sa). Morphology of the samples was studied by scanning electron microscopy. The best sample preparation technique was Ma/Sa with the optimum sample to matrix molar ratio 1 : 100. Detection limit was in the low picomolar range. The relative response of WEs decreased with their molecular weight, and minor differences between signals of saturated and monounsaturated WEs were observed. MALDI spectra of WEs showed molecular adducts with lithium [M + Li](+). Fragments observed in postsource decay (PSD) spectra were related to the acidic part of WEs [RCOOH + Li](+) and they were used for structure assignment. MALDI with LiDHB was used for several samples of natural origin, including insect and plant WEs. A good agreement with GC/MS data was achieved. Moreover, MALDI allowed higher WEs to be analyzed, up to 64 carbon atoms in Ginkgo biloba leaves extract.  相似文献   

6.
A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.  相似文献   

7.
Lithium 2,5-dihydroxybenzoate (LiDHB) is shown to be a very effective matrix for matrix-assisted laser desorption/ionization (MALDI) analysis of nonpolar long-chain lipids, hydrocarbons and polymers. Under standard desorption and ionization conditions using a conventional nitrogen UV laser (337 nm), hydrocarbons (C(24)-C(40)), diverse lipids (triglycerides, diglycerides, wax esters from leaves) and saturated polymers are effectively lithiated providing [M+Li](+) ions. The formation of lithiated hydrocarbons is not accompanied by an elimination of hydrogen or other fragmentation reactions and, due to the relatively simple isotopic distribution of lithium, seems to be more useable for analysis of hydrocarbon mixtures than the previously used silver cationization agents. The mass calibration can be conveniently performed either externally or internally using poly(ethylene glycol) commercial standards.  相似文献   

8.
王红磊  胡勇军  邢达 《分析化学》2011,39(2):276-282
激光光电离技术已广泛应用于质谱领域.基于单束激光的基质辅助激光解析(MALDI)质谱分析方法,已成为质谱分析生物大分子的标准方法之一.本文介绍的是另一种新的激光质谱分析方法:双步激光解析/激光电离质谱法(L2MS),与MALDI相比,该方法不需要加入与样品形成共结晶的基质,同时可通过独立地改变两束激光的光强和波长达到优...  相似文献   

9.
The analysis of oligonucleotides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has led to the investigation of the use of matrix additives (i.e., co-matrices) to help improve the poor spectral quality commonly observed during the analysis of this class of compounds. The use of certain matrix additives in MALDI-MS has been investigated previously, and these additives have been shown to enhance the desorption/ionization efficiency of oligonucleotides during the MALDI experiment. Specifically, amine bases, such as piperidine, imidazole, and triethylamine, have been shown to improve mass spectral quality as assessed by improved molecular ion resolution and increased molecular ion abundance. These improvements occur due to competition between the oligonucleotide and the co-matrix for protons generated during the MALDI event. Co-matrices with proton affinities near or above the proton affinities of the nucleotide residues serve as proton sinks during the desorption/ionization process. In this work, we have investigated the use of polyamines as co-matrices for MALDI mass spectrometric analysis of oligonucleotides. Spermine tetrahydrochloride, spermine, spermidine trihydrochloride, and spermidine were evaluated for their effectiveness at enhancing the mass spectral quality of oligonucleotides analyzed using MALDI-MS. The solution-phase pK( b) values and the gas-phase proton affinities of these polyamines were determined, and it was found that the polyamines appear to be more basic than the monofunctional amines investigated previously. The mass spectral data shows that spermidine and spermine are extremely effective co-matrices, yielding improved molecular ion resolution and molecular ion abundances. The spermine co-matrices are more effective than the spermidine co-matrices, but adduction problems with the spermine co-matrices limits their overall utility. In general, polyamine co-matrices are found to be more effective than monofunctional amine co-matrices at improving the mass spectral data obtained during MALDI-MS of oligonucleotides.  相似文献   

10.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectra of small kappa-carrageenans are reported and discussed. MALDI spectra can be obtained in both positive and negative ion mode. In the absence of extraneous metal ions, positive ions are formed by the attachment of one Na(+) ion to the carrageenan, whereas for negative ions one Na(+) ion is detached from the sulfate group. Multiply charged species are not observed in MALDI. Intense ESI spectra can be obtained in negative ion mode and now multiply charged species are seen. Alkali exchange experiments show that in these small carrageenan anions one, but only one, alkali metal ion is bound in a bidentate coordination with two ionic sulfate groups. G2-type ab initio calculations on model ions HO(-) [M(+)] (-)OH (M = Li, Na, K, Cs), as well as arguments based on a simple Coulombic interaction model, show that the bidentate stabilization energy drops rapidly as the size of the alkali cation increases. Exchange of Na(+) with Li(+) leads to expulsion of the Na(+) ion generating, in ESI, intense multiply charged anions. An attempt is made to rationalize this behavior in terms of hydration effects.  相似文献   

11.
A new method for analyzing plant oils was developed, which allows determination of fatty acid (FA) and triglyceride (TG) compositions of oils directly from their chromatograms without complete separation and peak identification. TGs of oils were separated by subcritical fluid chromatography using an octadecyl-silica column, carbon dioxide mobile phase and flame ionization detector. Observed chromatograms were compared with simulated ones, which were generated using FA compositions and predicted retentions of TGs on the assumption that FAs are combined with glycerol at random. FA compositions were determined by minimizing the differences between observed and simulated chromatograms through trial and error. Compared with GC analysis, relative errors of calculated FA compositions were less than 10% for main components (mol fraction>0.2). However, cocoa butter presented large errors even for main components because of the selective bonding of FAs to glycerol. Application of this method to the analysis of blended oils was also demonstrated, where FA compositions and mixing ratio were determined.  相似文献   

12.
A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.  相似文献   

13.
A possibility of using tryptamine as a reactive matrix for the analysis of non-polar carbonyl compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been shown. Presence of a terminal primary amine group in the tryptamine molecule predetermines the formation of Schiff bases from aliphatic and alicyclic carbonyl compounds. No additional matrix compounds are necessary to register MALDI mass spectra, because the excess of the derivatization agent plays the role of a matrix. MALDI mass spectra demonstrate high efficiency of desorption/ionization of the derivatives. To discover reactive matrices, a set of aromatic primary amines (mainly substituted anilines) has been tested, but they have not demonstrated matrix properties.  相似文献   

14.
Lithium salts of organic aromatic acids (lithium benzoate, lithium salicylate, lithium vanillate, lithium 2,5‐dimethoxybenzoate, lithium 2,5‐dihydroxyterephthalate, lithium α‐cyano‐4‐hydroxycinnamate and lithium sinapate) were synthesized and tested as potential matrices for the matrix‐assisted laser desorption/ionization (MALDI)‐mass spectrometry analysis of hydrocarbons and wax esters. The analytes were desorbed using nitrogen laser (337.1 nm) and ionized via the attachment of a lithium cation, yielding [M + Li]+ adducts. The sample preparation and the experimental conditions were optimized for each matrix using stearyl behenate and n‐triacontane standards. The performance of the new matrices in terms of signal intensity and reproducibility, the mass range occupied by matrix ions and the laser power threshold were studied and compared with a previously recommended lithium 2,5‐dihydroxybenzoate matrix (LiDHB) (Cva?ka and Svato?, Rapid Commun. Mass Spectrom. 2003, 17, 2203). Several of the new matrices performed better than LiDHB. Lithium vanillate offered a 2–3 times and 7–9 times higher signal for wax esters and hydrocarbons, respectively. Also, the signal reproducibility improved substantially, making this matrix a suitable candidate for imaging applications. In addition, the diffuse reflectance spectra and solubility of the synthesized compounds were investigated and discussed with respect to the compound's ability to serve as MALDI matrices. The applicability of selected matrices was tested on natural samples of wax esters and hydrocarbons. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The coupling of nano high-performance liquid chromatography (nanoHPLC) with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) via an automatic spotting roboter was developed and adapted for the first time for the analysis of complex mixtures of glycosphingolipids (GSLs). The 2,5-dihydroxybenzoic acid and 6-azo-2-thiothymine matrix systems were adjusted to concurrently meet the requirements for reproducible and homogeneous crystal formation with the liquid chromatography (LC) eluent under the variable LC solvent composition over the course gradient and high ionization efficiency of the GSL species, without the need for recrystallization. Precise adjustment of the automatic spotting parameters in terms of matrix flow rate, on-tip collection time of the matrix/LC eluent solution and the matrix spotting mode, i.e., continuous and discontinuous, was accomplished to collect individually nanoHPLC-separated species within distinct spots and consequently recover by MALDI MS screening all major and minor GSL species in the mixtures. The nanoHPLC/MALDI MS coupling protocol was developed and applied to a mixture of neutral GSLs purified from human erythrocytes and a monosialoganglioside mixture expressed by the murine MDAY-D2 cell line. Additionally, on-line nanoHPLC/MALDI doping with lithium cations of individually separated neutral GSLs was introduced to enhance data interpretation of the GSL MS pattern, while preserving the same level of information and ultimately to enhance structural assignment of components of interest. The method is demonstrated to be highly sensitive, reaching the low femtomole level of detection of individual GSL species and is highlighted as a versatile analytical tool for glycolipidomic studies. Figure Automatic LC/MALDI MS profiling of glycosphingolipids Mostafa Zarei and Stephan Kirsch contributed equally to this work.  相似文献   

16.
Traditional matrix does not allow matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS) to analyze volatile compounds,because volatile analytes may vaporize during the sample preparation process or in the high vacuum circumstance of ion source.Herein,we reported a Co and N doped porous carbon material(Co-NC) which were synthesized by pyrolysis of a Schiff base coordination compound.Co-NC could simultaneously act as adsorbent of volatile compounds and as matrix of MALDI MS,to provide the capability of MALDI MS to analyze volatile compounds.As adsorbent,Co-NC could stro ngly adsorb and enrich the volatile compounds in perfume and herbs,and hold them even in the high vacuum circumstance.On the other hand,Co-NC could absorb the energy of the laser,and then transfer the energy to the analyte for desorption and ionization of analyte in both negative and positive ionization modes.Additionally,the background interferences were avoided in the low-mass region(<500 Da) when using Co-NC as matrix,overcoming the challenges of MALDI MS analysis of small molecule compounds.In summary,Co-NC as matrix tremendously extended the application of MALDI MS.  相似文献   

17.
A high pressure matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) ion source was designed and tested. With this design, pressure is pulsed to an estimated 1-10 mbar in the region of the MALDI sample during desorption with the result of significantly decreased fragmentation compared to similar systems operating with pressures of <0.1 mbar. The thermal stabilization of vibrationally excited ions under these conditions is shown with small peptides desorbed from the "hot" matrix alpha-cyano-4-hydroxycinnamic acid, and with the highly labile oxidized beta-chain of insulin. Fragile gangliosides with several sialic acid residues are desorbed under high pressure and remain intact without the typical losses of sialic acid, and a protein standard, ubiquitin (8565.64 Da), is desorbed with minimal dehydration. Under high pressure collisional cooling conditions, non-covalent matrix adduction to the molecular ions becomes prominent, but with the trapped ions in an FT mass spectrometer, the ions can be mildly activated to detach the matrix adducts. The new source, additionally, generates significant levels of the multiply charged ions which are commonly seen in MALDI-TOFMS, but are rarely observed in MALDI-FTMS. This effect is more likely due to the elimination of a mass filtering effect in the previous FTMS ion source than to collisional cooling of the ions.  相似文献   

18.
Direct two-photon ionization of the matrix has been considered a likely primary ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. This mechanism requires that the vertical ionization threshold of matrix materials be below twice the laser photon energy. Because dimers and larger aggregates may be numerous in the early stages of the MALDI plume expansion, their ionization thresholds are important as well. We have used two-color two-photon ionization to determine the ionization thresholds of jet cooled clusters of an important matrix, 2,5-dihydroxy benzoic acid (DHB), and mixed clusters with the thermal decomposition product of DHB, hydroquinone. The thresholds of the clusters were reduced by only a few tenths of an eV compared to the monomers, to an apparent limit of 7.82 eV for pure DHB clusters. None of the investigated clusters can be directly ionized by two nitrogen laser photons (7.36 eV), and the ionization efficiency at the thresholds is low.  相似文献   

19.
A comparison of ionization efficiency for gold and silver nanoparticles used as an active media of matrix‐less laser desorption/ionization (LDI) mass spectrometry (MS) methods was made for carboxylic acids including fatty acids. The matrix‐assisted laser desorption/ionization (MALDI)‐type targets containing monoisotopic cationic 109Ag nanoparticles (109AgNPs) and Au nanoparticles (AuNPs) were used for rapid MS measurements of 10 carboxylic acids of different chemical properties. Carboxylic acids were directly quantified in experiments with 10 000‐fold concentration change conditions ranging from 1 mg/ml to 100 ng/ml which equates to 1 μg to 100 pg of carboxylic acids per measurement spot.  相似文献   

20.
Analyses of fatty acid (FA) composition in freshwater fishes promote understanding of the potential relationship between fish health or human nutrition and specific FAs. Therefore, the chemical identity of FAs in endemic fishes must be established. Paddlefish, sauger, and white bass were collected from the Ohio River. The structural identification of esterified FAs from fish-fillet lipids was conducted using gas chromatography-mass spectrometry (GC-MS). The same 13 FAs, composing more than 90% of the mass of FAs extracted by techniques used in this research, were found in all three species examined. Carbon chain length and degree and position of unsaturation were determined from the characteristic ionization and fragmentation of FA methyl esters (FAMEs) resulting from GC-MS electron impact (EI) and chemical ionization (CI) modes. Assignment of structure to the extracted FAs required complementary interpretation of both EI and CI MS. The EI spectra observed substantiate findings reported in the literature. The novelty of this research is in the thorough interpretation of CI spectra for which less data are available. The observations reported for analyses of fishes will be useful to all researchers studying FAs regardless of sample media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号