共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuum mechanics relies on the fundamental notion of a mesoscopic volume “element” in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests that a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element method (DEM) simulations of different granular flows and show that an approximate “granular element” defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships between average variables. 相似文献
2.
By representing the assembly by a simplified column model, a constitutive theory, referred to as sliding–rolling theory, was recently developed for a two-dimensional assembly of rods subjected to biaxial loading, and then extended to a three-dimensional assembly of spheres subjected to triaxial (equibiaxial) loading. The sliding–rolling theory provides a framework for developing a phenomenological constitutive law for granular materials, which is the objective of the present work. The sliding–rolling theory provides information concerning yield and flow directions during radial and non-radial loading. In addition, the theory provides information on the role of fabric anisotropy on the stress–strain behavior and critical state shear strength. In the present paper, a multi-axial phenomenological model is developed within the sliding–rolling framework by utilizing the concepts of critical state, classical elasto-plasticity and bounding surface. The resulting theory involves two yield surfaces and falls within the definition of the multi-mechanism models. Computational issues concerning the solution uniqueness for stress states at the corner of yield surfaces are addressed. The effect of initial and induced fabric anisotropy on the constitutive behavior is incorporated. It is shown that the model is capable of simulating the effect of anisotropy, and the behavior of loose and dense sands under drained and undrained loading. 相似文献
3.
4.
The flow of granular materials between rotating cylinders is studied using a continuum model proposed by Rajagopal and Massoudi (A method for measuring material moduli for granular materials: flow in an orthogonal rheometer, DOE/PETC/TR90/3, 1990). For a steady, fully developed condition, the governing equations are reduced to a system of coupled non-linear ordinary differential equations. The resulting boundary value problem is non-dimensionalized and is then solved numerically. The effect of material parameters, i.e., dimensionless numbers on the volume fraction and the velocity fields are studied. 相似文献
5.
Itai Einav 《Journal of the mechanics and physics of solids》2007,55(6):1298-1320
The compression of granular materials has been traditionally modelled with the limitations of classical elasto-plasticity. The energy was implicitly assumed to dissipate from the frictional interaction of particles. However, the fact that brittle granular materials crush suggests that energy must also be dissipated from the fracturing of the grains, as in fracture mechanics. The concept of breakage as a thermomechanical internal variable was introduced in Part I [Einav, I., 2006. Breakage mechanics—Part I: theory. J. Mech. Phys. Solids 00,000-000] to describe the fracturing mechanisms. The theory allows to treat ideal theoretical materials that undergo dissipation purely from breakage with no other mechanism allowed for the energy consumption. However, as accounted for in elasto-plasticity, dissipation must also occur from the frictional rearrangement of grains. The combination of the two dissipative mechanisms of breakage and plasticity must therefore be investigated, as we do in this paper. Those two mechanisms are generally coupled, in the sense that one inevitably appears when the other develops. Plastic dissipation emerges as a by-product of breakage dissipation because after grains crush, local rearrangement must occur. This scenario may be termed an ‘active breakage mechanism’, and typifies compression deformations. In shear the plastic dissipation is dominant but breakage appears inevitably from grains abrasion. This scenario may be called a ‘passive breakage mechanism’. Based on the coupling assumption, models are developed for granular materials. In particular, we show that in compression isotropic hardening of sands may appear without involving plastic strains, i.e., independent of frictional dissipation. This interpretation of hardening is different from the one used in classical critical state soil mechanics. However, frictional dissipation leads to plastic straining that are necessary for the models to be predictive in unloading. 相似文献
6.
The purpose of the present study is to clarify both the compression phenomenon and the gas filtration effect that take place inside a granular medium when it is dynamically loaded by a shock wave. In order to measure the pore pressure and the total stress at different locations along the granular medium, pressure transducers were placed along the side-wall and at the end-wall of the shock tube test section, which was filled with the granular material. In order to elucidate the gas filtration effect, the results of two experiments with identical granular media but with and without filtration were compared. The gas filtration was eliminated by means of a thin plastic film, which was placed at the front edge of the granular medium. Based on this comparison quantitative information on the gas filtration and its role in the stress formation inside granular media of different material and length was obtained. Furthermore, curves of the dynamic compression and the Young moduli of the granular medium for the range of the operating conditions were reconstructed. 相似文献
7.
8.
The behavior of granular materials subjected to continuous vertical vibrations is dependent on a variety of factors, including how energetically the containment vessel is shaken as well as particle properties. Motivation for the investigation reported here is based on phenomenon in which bulk solids attain an increase in density upon relaxation. The results of a detailed, discrete element study designed to examine the dynamic state of a granular material is presented, in which particles are represented as inelastic, frictional spheres. The phase in which the assembly finds itself immediately before vibrations are stopped is quantified by computing depth profiles of the translational energy ratio R in conjunction with profiles of solids fraction ν and granular temperature T. The use of particles that are more frictional tends to hinder or delay thermalization, while particle restitution coefficient plays a role when the flow is collision dominated. The structure before vibrations are applied plays an important role in determining the depth profiles and the phase pattern only at low accelerations. On the other hand, large accelerations can easily dislodge the poured configuration very quickly so that the initial condition is not major factor in the phase pattern. 相似文献
9.
We study the shearing flow of granular materials between two horizontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (DOE Report, DOE/PETC/TR-90/3, 1990). The material coefficients such as viscosity and normal stress coefficients are based on the model of Boyle and Massoudi (Int. J. Eng. Sci 28 (1990) 1261). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique. 相似文献
10.
11.
Recently, Massoudi (2011a) derived a generalized form of a constitutive relation related to Reiner's fluid model for wet sand, where not only the effects of volume fraction are incorporated in the rheological properties of the fluid, but also the shear viscosity depends on the shear rate. In this paper, we use this model to study the fully developed flow of granular-like materials down an inclined plane. The governing equations are made dimensionless and numerical solutions are presented for the various dimensionless parameters. 相似文献
12.
It is known that there is wide, and at present, unbridgeable, gap between discrete and continuum granular mechanics. In this contribution, first, microscopic kinematic variables neglected in classical continuum granular mechanics are investigated based on the kinematics of discs in contact. Then, a kinematic variable called the averaged pure rotation rate (APR) is proposed for an assembly of circular discs of different sizes, which is then used to produce another two kinematic tensors with one equal to the deformation rate tensor and the other unifying the spin tensor and the APR. As an example, the kinematic variables are incorporated into the unified double-slip plasticity model. Finally, these theoretical analyses are verified using a two-dimensional discrete element method. The study shows that these kinematic variables can be used to bridge discrete and continuum granular mechanics. 相似文献
13.
In this paper, we study the fully developed gravity-driven flow of granular materials between two inclined plates. We assume that the granular materials can be represented by a modified form of the second grade fluid where the viscosity depends on the shear rate and volume fraction and the normal stress coefficients depend on the volume fraction. We also propose a new isotropic (spherical) part of the stress tensor which can be related to the compactness of the (rigid) particles. This new term ensures that the rigid solid particles cannot be compacted beyond a point, namely when the volume fraction has reached the critical/maximum packing value. The numerical results indicate that the newly proposed stress tensor has obvious and physically meaningful effects on both the velocity and the volume fraction fields. 相似文献
14.
15.
We extended the standard approach to countercurrent gas–solid flow in vertical vessels by explicitly coupling the gas flow and the rheology of the moving bed of granular solids, modelled as a continuum, pseudo-fluid. The method aims at quantitatively accounting for the presence of shear in the granular material that induces changes in local porosity, affecting the gas flow pattern through the solids. Results are presented for the vertical channel configuration, discussing the gas maldistribution both through global and specific indexes, highlighting the effect of the relevant parameters such as solids and gas flowrate, channel width, and wall friction. Non-uniform gas flow distribution resulting from uneven bed porosity is also discussed in terms of gas residence time distribution (RTD). The theoretical RTD in a vessel of constant porosity and Literature data obtained in actual moving beds are qualitatively compared to our results, supporting the relevance under given circumstances of the coupling between gas and solids flow. 相似文献
16.
《Particuology》2023
In order to study the fragmentation law, the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work. It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy. Meanwhile, two particle failure modes caused by different contact force states are analyzed, which are single-through-crack failure and multi-short-crack failure. Considering the vertical distribution of the number of cracks and the four characteristic stress distributions (the stress related to the maximum contact force, the major principal stress, the deviatoric stress and the mean stress), it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately. In addition, the size effect of particle crushing indicates that small size particles are prone to break. The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage. 相似文献
17.
Luigi La Ragione James T. Jenkins 《Journal of the mechanics and physics of solids》2009,57(9):1449-1458
Granular materials are a simple example of a Cosserat continuum in that the average particle rotations may differ from the rotation of the average deformation. In the absence of couple stress, this difference insures that the stress is symmetric. This has been shown in theories that assume that the displacement at particle contacts is given by the average deformation and spin. Here, we indicate how the difference between the average rotation of the particles and the average rotation of the deformation can be determined when fluctuations in particle displacements and rotations satisfy local force and moment equilibria in a random aggregate of identical spheres. The predictions based on this model are in better agreement with numerical simulation than that given by the simple average strain theory. 相似文献
18.
Franco Angotti 《Meccanica》1976,11(1):18-22
Summary We deal with cohesionless granular materials in the framework of the continuum theory presented in [2]. For these materials we finda priori restrictions assuring uniqueness and stability of motion. Whereas our Liapunov stability analysis leads only to a partially satisfactory result, Hölder stability is completely characterizedvia a logarithmic convexity argument.
Research supported by the Italian National Research Council (C.N.R. Gruppo PAdIS). 相似文献
Sommario Nel presente lavoro vengono stabilite alcune restrizionia priori sufficienti ad assicurare l'unicità e la stabilità del moto di un mezzo granulare il cui comportamento è descritto dall'equazione costituiva proposta in [2]. Una volta osservato che l'analisi della stabilità, nel senso di Liapunov, non conduce a risultati soddisfacenti, si passa ad esaminare la stabilità nel senso di Hölder, mediante le argomentazioni della convessità logaritmica, pervenendo così ad alcune semplici restrizioni sui coefficienti di risposta del materiale considerato.
Research supported by the Italian National Research Council (C.N.R. Gruppo PAdIS). 相似文献
19.
In micromechanics of granular materials, relationships are investigated between micro-scale characteristics of particles and contacts and macro-scale continuum characteristics. For three-dimensional isotropic assemblies the macro-scale elastic characteristics are described by the bulk and the shear modulus, which depend on the micro-scale characteristics of the coordination number (i.e. the average number of contacts per particle) and the interparticle contact stiffnesses in directions normal and tangential to the contact. 相似文献
20.
François Nicot Nejib Hadda Luc Sibille Farhang Radjai Pierre-Yves Hicher Félix Darve 《Comptes Rendus Mecanique》2014,342(3):174-188
This paper discusses the notion of failure in a granular assembly by examining the key microstructural mechanisms which are most likely to trigger the nucleation and propagation of instabilities within a granular material. For this purpose, the key variable to predict the occurrence of failure, known as second-order work, is expressed from variables on the grain scale. The local behaviour incidents (where contacts may open or slide), compared to the global response of the assembly, are analysed by two approaches. First, numerical computations made by a discrete element model confirm the microscopic definition of the second-order work. Secondly, a micromechanical model, based on a homogenization procedure, relating the macroscopic behaviour to microscopic ingredients, namely contact planes, points to a close link between the occurrence of failure on the macroscopic scale as well as on the contact planes. 相似文献