首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Abstract

Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

2.

Abstract

The coordinated regulation of cellular protein synthesis and degradation is essential for normal cellular functioning. The ubiquitin proteasome system mediates the intracellular protein degradation that is required for normal cellular homeostasis. The 26S proteasome is a multi-enzyme protease that degrades redundant proteins; conversely, inhibition of proteasomal degradation results in intracellular aggregation of unwanted proteins and cell death. This observation led to the development of proteasome inhibitors as therapeutics for use in cancer. The clinical applicability of targeting proteasomes is exemplified by the recent FDA approval of the first proteasome inhibitor, bortezomib, for the treatment of relapsed/refractory multiple myeloma. Although bortezomib represents a major advance in the treatment of this disease, it can be associated with toxicity and the development of drug resistance. Importantly, extensive preclinical studies suggest that combination therapies can both circumvent drug resistance and reduce toxicity. In addition, promising novel proteasome inhibitors, which are distinct from bortezomib, and exhibit equipotent anti-multiple myeloma activities, are undergoing clinical evaluation in order to improve patient outcome in multiple myeloma.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

3.

Abstract

Every year, approximately 470,000 new cases of cervical cancer are diagnosed and approximately 230,000 women worldwide die of the disease, with the majority (~80%) of these cases and deaths occurring in developing countries. Human papillomaviruses (HPVs) are the etiological agents in nearly all cases (99.7%) of cervical cancer, and the HPV E6 protein is one of two viral oncoproteins that is expressed in virtually all HPV-positive cancers. E6 hijacks a cellular ubiquitin ligase, E6AP, resulting in the ubiquitylation and degradation of the p53 tumor suppressor, as well as several other cellular proteins. While the recent introduction of prophylactic vaccines against specific HPV types offers great promise for prevention of cervical cancer, there remains a need for therapeutics. Biochemical characterization of E6 and E6AP has suggested approaches for interfering with the activities of these proteins that could be useful for this purpose.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

4.

Background

The binding of ligands to clusters of complement-type repeat (CR)-domains in proteins of the low-density lipoprotein receptor (LDLR) family is dependent on Ca2+ ions. One reason for this cation requirement was identified from the crystal structure data for a CR-domain from the prototypic LDLR, which showed the burial of a Ca2+ ion as a necessity for correct folding and stabilization of this protein module. Additional Ca2+ binding data to other CR-domains from both LDLR and the LDLR-related protein (LRP) have suggested the presence of a conserved Ca2+ cage within CR-domains from this family of receptors that function in endocytosis and signalling.

Results

We have previously described the binding of several ligands to a fragment comprising the fifth and the sixth CR-domain (CR56) from LRP, as well as qualitatively described the binding of Ca2+ ions to this CR-domain pair. In the present study we have applied the rate dialysis method to measure the affinity for Ca2+, and show that CR56 binds 2 Ca2+ ions with an average affinity of KD = 10.6 microM, and there is no indication of additional Ca2+ binding sites within this receptor fragment.

Conclusions

Both CR-domains of CR56 bind a single Ca2+ ion with an affinity of 10.6 microM within the range of affinities demonstrated for several other CR-domains.
  相似文献   

5.

Abstract

Type 2 diabetes is caused by defects in both insulin signaling and insulin secretion. Though the role of the ubiquitin proteasome system (UPS) in the pathogenesis of type 2 diabetes remains largely unexplored, the few examples present in the literature are interesting and suggest targets for drug development. Studies indicate that insulin resistance can be induced by stimulating the degradation of important molecules in the insulin signaling pathway, in particular the insulin receptor substrate proteins IRS1, IRS2 and the kinase AKT1 (Akt). In addition, a defect in insulin secretion could occur due to UPS-mediated degradation of IRS2 in the β-cells of the pancreas. The UPS also appears to be involved in regulating lipid synthesis in adipocytes and lipid production by the liver and could influence the development of obesity. Other possible mechanisms for inducing defects in insulin signaling and secretion remain to be explored, including the role of ubiquitylation in insulin receptor internalization and trafficking.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

6.

Background

Gamma glutamylcyclotransferase (GGCT) has been proved to be involved in various cancers, but the biological function of GGCT in gastric cancer is still largely unknown.

Methods

The expression level of GGCT was evaluated by informatics analyses based on the Oncomine database. GGCT gene was then effectively knocked down via lentivirus mediated short hairpin RNA (shRNA) system. Then a series of functional assays, including MTT, colony formation and flow cytometry analysis were conducted on gastric cancer cells following GGCT knockdown.

Results

We found GGCT is commonly up-regulated in gastric cancer tissues. Furthermore, MTT analysis showed that GGCT depletion significantly inhibited cell proliferation in MGC80-3 and AGS cells. Colony formation assay revealed that depletion of GGCT reduced the colony formation ability in gastric cancer cells. What’s more, cell cycle analysis showed that depletion of GGCT induced gastric cancer cell cycle arrested G2/M phase. More importantly, cell apoptosis analysis further revealed that GGCT inhibition induced early and late cell apoptosis in gastric cancer.

Conclusion

This study suggests GGCT is essential for gastric cancer proliferation and its downregulation may provide a potential anticancer therapy for gastric cancer.
  相似文献   

7.

Background

Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca2+ dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions.

Results

In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg2+ dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1.

Conclusions

This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.
  相似文献   

8.

Abstract

The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i) expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii) validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

9.

Background

Novel six organic donor-π-acceptor molecules (D-π-A) used for Bulk Heterojunction organic solar cells (BHJ), based on thienopyrazine were studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches, to shed light on how the π-conjugation order influence the performance of the solar cells. The electron acceptor group was 2-cyanoacrylic for all compounds, whereas the electron donor unit was varied and the influence was investigated.

Methods

The TD-DFT method, combined with a hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) in conjunction with a polarizable continuum model of salvation (PCM) together with a 6-31G(d,p) basis set, was used to predict the excitation energies, the absorption and the emission spectra of all molecules.

Results

The trend of the calculated HOMO–LUMO gaps nicely compares with the spectral data. In addition, the estimated values of the open-circuit photovoltage (Voc) for these compounds were presented in two cases/PC60BM and/PC71BM.

Conclusion

The study of structural, electronics and optical properties for these compounds could help to design more efficient functional photovoltaic organic materials.
  相似文献   

10.

Background

Generally, proteases in medicinal plants had different therapeutic effects such as anti-inflammatory effect; modulate the immune response and inhibitory effect toward tumor growth. In this study, protease was purified and characterized from miswak roots, as medicinal plant and natural toothbrush.

Results

Physical and chemical characterization of cysteine protease P1 were studied such as pH optimum (6.5), optimum temperature (50?°C), thermal stability (50?°C) and Km (3.3?mg azocasein/ml). The enzyme digested some proteins in the order of caseine > haemoglobin > egg albumin >gelatin > bovine serum albumin. Hg2+ had strong inhibitory effect on enzyme activity compared with other metal ions. Kinetic of inhibition for determination the type of protease was studied. Iodoactamide and p-Hydroximercuribenzaoic acid (p-HMB) caused strong inhibitory effect on enzyme activity indicating the enzyme is cysteine protease.

Conclusions

The biochemical characterization of this enzyme will be display the suitable conditions for using of this enzyme in toothpaste in the future and the enzyme may be used in other applications.
  相似文献   

11.

Background

The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials.

Results

The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10-2 - 4.0 × 10-6, 1 × 10-2 - 5.0 × 10-6, 1 × 10-2 - 5.0 × 10-6 M), with detection limits of 3 × 10-6, 4 × 10-6 and 4.0 × 10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively.

Conclusions

The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.
  相似文献   

12.

Background

Previous screening of the substrate repertoires and substrate specificity profiles of granzymes resulted in long substrate lists highly likely containing bystander substrates. Here, a recently developed degradomics technology that allows distinguishing efficiently from less efficiently cleaved substrates was applied to study the degradome of mouse granzyme B (mGrB).

Results

In vitro kinetic degradome analysis resulted in the identification of 37 mGrB cleavage events, 9 of which could be assigned as efficiently targeted ones. Previously, cleavage at the IEAD75 tetrapeptide motif of Bid was shown to be efficiently and exclusively targeted by human granzyme B (hGrB) and thus not by mGrB. Strikingly, and despite holding an identical P4-P1 human Bid (hBid) cleavage motif, mGrB was shown to efficiently cleave the BCL2/adenovirus E1B 19 kDa protein-interacting protein 2 or BNIP-2 at IEAD28. Like Bid, BNIP-2 represents a pro-apoptotic Bcl-2 protein family member and a potential regulator of GrB induced cell death. Next, in vitro analyses demonstrated the increased efficiency of human and mouse BNIP-2 cleavage by mGrB as compared to hGrB indicative for differing Bid/BNIP-2 substrate traits beyond the P4-P1 IEAD cleavage motif influencing cleavage efficiency. Murinisation of differential primed site residues in hBNIP-2 revealed that, although all contributing, a single mutation at the P3′ position was found to significantly increase the mGrB/hGrB cleavage ratio, whereas mutating the P1′ position from I29?>?T yielded a 4-fold increase in mGrB cleavage efficiency. Finally, mutagenesis analyses revealed the composite BNIP-2 precursor patterns to be the result of alternative translation initiation at near-cognate start sites within the 5′ leader sequence (5′UTR) of BNIP-2.

Conclusions

Despite their high sequence similarity, and previously explained by their distinct tetrapeptide specificities observed, the substrate repertoires of mouse and human granzymes B only partially overlap. Here, we show that the substrate sequence context beyond the P4-P1 positions can influence orthologous granzyme B cleavage efficiencies to an unmatched extent. More specifically, in BNIP-2, the identical and hGrB optimal IEAD tetrapeptide substrate motif is targeted highly efficiently by mGrB, while this tetrapeptide motif is refractory towards mGrB cleavage in Bid.
  相似文献   

13.

Background

Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP.

Methods

Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP.

Results

In this work we used, after several optimization reactions, creatine kinase isoforms as well as ?NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method.

Conclusion

With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.
  相似文献   

14.

Abstract

During the past decade, progress in endocrine therapy and the use of trastuzumab has significantly contributed to the decline in breast cancer mortality for hormone receptor-positive and ERBB2 (HER2)-positive cases, respectively. As a result of these advances, a breast cancer cluster with poor prognosis that is negative for the estrogen receptor (ESR1), the progesterone receptor (PRGR) and ERBB2 (triple negative) has come to the forefront of medical therapeutic attention. DNA microarray analyses have revealed that this cluster is phenotypically most like the basal-like breast cancer that is caused by deficiencies in the BRCA1 pathways. To gain further improvements in breast cancer survival, new types of drugs might be required, and small molecules targeting the ubiquitin proteasome system have moved into the spotlight. The success of bortezomib in the treatment of multiple myeloma has sent encouraging signals that proteasome inhibitors could be used to treat other types of cancers. In addition, ubiquitin E3s involved in ESR1, ERBB2 or BRCA1 pathways could be ideal targets for therapeutic intervention. This review summarizes the ubiquitin proteasome pathways related to these proteins and discusses the possibility of new drugs for the treatment of breast cancers.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

15.

Background

The cytochrome P450s are monooxygenases that insert oxygen functionalities into a wide variety of organic substrates with high selectivity. There is interest in developing efficient catalysts based on the “peroxide shunt” pathway in the cytochrome P450s, which uses H2O2 in place of O2/NADPH as the oxygenation agent. We report on our initial studies using cytochrome c peroxidase (CcP) as a platform to develop specific “peroxygenation” catalysts.

Results

The peroxygenase activity of CcP was investigated using 1-methoxynaphthalene as substrate. 1-Methoxynaphthalene hydroxylation was monitored using Russig’s blue formation at standard reaction conditions of 0.50 mM 1-methoxynaphthalene, 1.00 mM H2O2, pH 7.0, 25°C. Wild-type CcP catalyzes the hydroxylation of 1-methoxynaphthalene with a turnover number of 0.0044?±?0.0001 min-1. Three apolar distal heme pocket mutants of CcP were designed to enhance binding of 1-methoxynaphthalene near the heme, constructed, and tested for hydroxylation activity. The highest activity was observed for CcP(triAla), a triple mutant with Arg48, Trp51, and His52 simultaneously mutated to alanine residues. The turnover number of CcP(triAla) is 0.150?±?0.008 min-1, 34-fold greater than wild-type CcP and comparable to the naphthalene hydroxylation activity of rat liver microsomal cytochrome P450. While wild-type CcP is very stable to oxidative degradation by excess hydrogen peroxide, CcP(triAla) is inactivated within four cycles of the peroxygenase reaction.

Conclusions

Protein engineering of CcP can increase the rate of peroxygenation of apolar substrates but the initial constructs are more susceptible to oxidative degradation than wild-type enzyme. Further developments will require constructs with increased rates and selectivity while maintaining the stability of wild-type CcP toward oxidative degradation by hydrogen peroxide.
  相似文献   

16.

Background

Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds.

Methods

qPCR evaluated DGAT mRNA levels in mouse 3?T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds.

Results

TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3.

Conclusion

The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
  相似文献   

17.

Background

BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells.

Results

A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues.

Conclusions

KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells.
  相似文献   

18.

Background

One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface.

Results

In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion.

Conclusion

Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.
  相似文献   

19.

Background

Previous studies have demonstrated that members of Trichoderma are able to generate appreciable amount of extracellular amylase and glucoamylase on soluble potato starch. In this study the α-amylase was purified and characterized from Trichoderma pseudokoningii grown on orange peel under solid state fermentation (SSF).

Results

Five α-amylases A1-A5 from Trichodrma pseudokoningii were separated on DEAE-Sepharose column. The homogeneity of α-amylase A4 was detected after chromatography on Sephacryl S-200. α-Amylase A4 had molecular weight of 30 kDa by Sephacryl S-200 and SDS-PAGE. The enzyme had a broad pH optimum ranged from 4.5 to 8.5. The optimum temperature of A4 was 50 °C with high retention of its activity from 30 to 80 °C. The thermal stability of A4 was detected up to 50 °C and the enzyme was highly stable till 80 °C after 1 h incubation. All substrate analogues tested had amylase activity toward A4 ranged from 12 to 100% of its initial activity. The Km and Vmax values of A4 were 4 mg starch/ml and 0.74 μmol reducing sugar, respectively. The most of metals tested caused moderate inhibitory effect, except of Ca2+ and Mg2+ enhanced the activity. Hg2+ and Cd+?2 strongly inhibited the activity of A4. EDTA as metal chelator caused strong inhibitory effect.

Conclusions

The properties of the purified α-amylase A4 from T. pseudokoningii meet the prerequisites needed for several applications.
  相似文献   

20.

Background

Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,β-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum.

Methods

In vitro and in vivo assays relying on visual inspection, spectrophotometric quantification, as well as liquid-chormatographic and mass spectrometric characterization were applied for functional evaluation of the enzyme. X-ray crystallographic analyses and in silico modeling were applied for structural investigations.

Results

In vitro assays demonstrated preferential cleavage of resveratrol, while in vivo analyses detected putative cleavage of the straight chain carotenoid, lycopene. A high-resolution structure containing the seven-bladed β-propeller fold and conserved 4-His-Fe unit at the catalytic site, was obtained. Comparative structural alignments, as well as in silico modelling and docking, highlight potential molecular factors contributing to both the primary in vitro activity against resveratrol, as well as the putative subsidiary activities against carotenoids in vivo, for future validation.

Conclusions

The findings reported here provide validation of the SCO structure, and highlight enigmatic points with respect to the potential effect of the enzyme’s molecular environment on substrate specificities for future investigation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号