首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The molecular geometries and the nuclear spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-), n = 0-3, and the related system [(NC)(5)Pt-Tl-Pt(CN)(5)](3-) are studied. These complexes have received considerable interest since the first characterization of the n = 1 system by Glaser and co-workers in 1995 [J. Am. Chem. Soc. 1995, 117, 7550-7551]. For instance, these systems exhibit outstanding NMR properties, such as extremely large Pt-Tl spin-spin coupling constants. For the present work, all nuclear spin-spin coupling constants J(Pt-Tl), J(Pt-C), and J(Tl-C) have been computed by means of a two-component relativistic density functional approach. It is demonstrated by the application of increasingly accurate computational models that both the huge J(Pt-Tl) for the complex (NC)(5)Pt-Tl and the whole experimental trend among the series are entirely due to solvent effects. An approximate inclusion of the bulk solvent effects by means of a continuum model, in addition to the direct coordination, proves to be crucial. Similarly drastic effects are reported for the coupling constants between the heavy atoms and the carbon nuclei. A computational model employing the statistical average of orbital-dependent model potentials (SAOP) in addition to the solvent effects allows to accurately reproduce the experimental coupling constants within reasonable limits.  相似文献   

2.
The computation of indirect nuclear spin-spin coupling constants, based on the relativistic two-component zeroth order regular approximate Hamiltonian, has been recently implemented by us into the Amsterdam Density Functional program. Applications of the code for the calculation of one-bond metal-ligand couplings of coordinatively unsaturated compounds containing (195)Pt and (199)Hg, including spin-orbit coupling or coordination effects by solvent molecules, show that relativistic density functional calculations are able to reproduce the experimental findings with good accuracy for the systems under investigation. Spin-orbit effects are rather small for these cases, while coordination of the heavy atoms by solvent molecules has a great impact on the calculated couplings. Experimental trends for different solvents are reproduced. An orbital-based analysis of the solvent effect is presented. The scalar relativistic increase of the coupling constants is of the same order of magnitude as the nonrelativistically obtained values, making a relativistic treatment essential for obtaining quantitatively correct results. Solvent effects can be of similar importance.  相似文献   

3.
An analysis method for static linear response properties employing two-component (spin-orbit) relativistic density functional theory along with scalar relativistic "natural localized molecular orbitals" (NLMOs) and "natural bond orbitals" (NBOs) has been developed. The spin-orbit NLMO/NBO analysis has been applied to study the indirect spin-spin coupling (J-coupling) constants in Tl-I, PbH(4), and a dinuclear Pt-Tl bonded complex with a very large Pt-Tl coupling constant (expt.: 146.8 kHz). For Tl-I it is shown that the analysis scheme based on scalar relativistic NLMOs is applicable even if spin-orbit coupling is responsible for most of the coupling's magnitude. For PbH(4) it is shown that electron delocalization plays a much larger role for the Pb-H coupling than it is the case for the C-H coupling in methane. For the Pt-Tl complex the analysis clearly demonstrates the strong influence of the ligands on the Pt-Tl coupling constant and quantifies the effect of the delocalization of the Pt-Tl bond on the Pt-Tl coupling constant.  相似文献   

4.
5.
This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X=C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.  相似文献   

6.
One-bond Pt-Pt nuclear spin-spin coupling constants J(Pt-Pt) for closely related dinuclear Pt complexes can differ by an order of magnitude without any obvious correlation with Pt-Pt distances. As representative examples, the spin-spin couplings of the dinuclear Pt(I) complexes [Pt(2)(CO)(6)](2+) (1) and [Pt(2)(CO)(2)Cl(4)](2-) (2) have been computationally studied with a recently developed relativistic density functional method. The experimental values are (1)J((195)Pt-(195)Pt) = 5250 Hz for 2 but 551 Hz for 1. Many other examples are known in the literature. The experimental trends are well reproduced by the computations and can be explained based on the nature of the ligands that are coordinated to the Pt-Pt fragment. The difference for J(Pt-Pt) of an order of magnitude is caused by a sensitive interplay between the influence of different ligands on the Pt-Pt bond, and relativistic effects on metal-metal and metal-ligand bonds as well as on "atomic orbital contributions" to the nuclear spin-spin coupling constants. The results can be intuitively rationalized with the help of a simple qualitative molecular orbital diagram.  相似文献   

7.
The 295Pt and 205Tl NMR chemical shifts of the complexes [(NC)5Pt-Tl(CN)n]n- n=0-3, and of the related system [(NC)5Pt--Tl--Pt(CN)5]3- have been computationally investigated. It is demonstrated that based on relativistically optimized geometries, by applying an explicit first solvation shell, an additional implicit solvation model to represent the bulk solvent effects (COSMO model), and a DFT exchange-correlation potential that was specifically designed for the treatment of response properties, that the experimentally observed metal chemical shifts can be calculated with satisfactory accuracy. The metal chemical shifts have been computed by means of a two-component relativistic density functional approach. The effects of electronic spin-orbit coupling were included in all NMR computations. The impact of the choice of the reference, which ideally should not affect the accuracy of the computed chemical shifts, is also demonstrated. Together with recent calculations by us of the Pt and Tl spin-spin coupling constants, all measured metal NMR parameters of these complexes are now computationally determined with sufficient accuracy in order to allow a detailed analysis of the experimental results. In particular, we show that interaction of the complexes with the solvent (water) must be an integral part of such an analysis.  相似文献   

8.
The indirect nuclear spin-spin coupling constants between nuclei belonging to the axis and to the macrocycle of three structurally related rotaxanes have been calculated by means of density functional theory. It has been shown that the through-space axis-macrocycle proton-proton coupling constants can be as large as 0.4-0.5 Hz and therefore of measurable values. The largest through-space axis-macrocycle carbon-proton and nitrogen-proton coupling constants are 0.2-0.3 Hz. Visualization of coupling pathways by means of the coupling energy density method indicates that the larger proton-proton couplings are indeed transmitted through the space between the coupled nuclei. Thus, it seems that measurement of such couplings should be possible and that indirect spin-spin couplings can be actually transmitted through-space, with no covalent or hydrogen bonds between the coupled nuclei.  相似文献   

9.
A spherical Gaussian nuclear charge distribution model has been implemented for spin‐free (scalar) and two‐component (spin–orbit) relativistic density functional calculations of indirect NMR nuclear spin–spin coupling (J‐coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J‐couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg22+, and Tl? X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite‐nucleus effects.  相似文献   

10.
The reactions of [Pt(NH3)2(NHCOtBu)2] and TlX3 (X = NO3-, Cl-, CF3CO2-) yielded dinuclear [{Pt(ONO2)(NH3)2(NHCOtBu)}Tl(ONO2)2(MeOH)] (2) and trinuclear complexes [{PtX(RNH2)2(NHCOtBu)2}2Tl]+ [X = NO3- (3), Cl- (5), CF3CO2- (6)], which were spectroscopically and structurally characterized. Strong Pt-Tl interaction in the complexes in solutions was indicated by both 195Pt and 205Tl NMR spectra, which exhibit very large one-bond spin-spin coupling constants between the heteronuclei (1J(PtTl)), 146.8 and 88.84 kHz for 2 and 3, respectively. Both the X-ray photoelectron spectra and the 195Pt chemical shifts reveal that the complexes have Pt centers whose oxidation states are close to that of Pt(III). Characterization of these complexes by X-ray diffraction analysis confirms that the Pt and Tl atoms are held together by very short Pt-Tl bonds and are supported by the bridging amidate ligands. The Pt-Tl bonds are shorter than 2.6 Angstrom, indicating a strong metal-metal attraction between these two metals. Compound 2 was found to activate the C-H bond of acetone to yield a platinum(IV) acetonate complex. This reactivity corresponds to the property of Pt(III) complexes. Density functional theory calculations were able to reproduce the large magnitude of the metal-metal spin-spin coupling constants. The couplings are sensitive to the computational model because of a delicate balance of metal 6s contributions in the frontier orbitals. The computational analysis reveals the role of the axial ligands in the magnitude of the coupling constants.  相似文献   

11.
The effect of electron lone-pairs on the Fermi-contact (FC) contribution to indirect nuclear spin-spin coupling constants is analyzed using new tools for their interpretation. In particular, visualization of spin-spin coupling pathways using the coupling deformation density (CDD) has been employed. Furthermore, the recently developed perturbation-stable localization procedure has been applied for decomposition of CDD and the calculated value of couplings into contributions from localized molecular orbitals (LMOs). Correlation between the overlap of densities of LMOs representing lone-pairs and the Fermi-contact contribution to spin-spin coupling constants has been demonstrated. A new way for analyzing spin-spin couplings using the expansion of CDD as a linear combination of the products of molecular orbitals has been suggested. The considered examples include two- and three-bond phosphor-phosphor couplings. Significance of the obtained insight is not restricted to spin-spin couplings of nuclei possessing lone-pairs, as demonstrated in the example of vicinal hydrogen-hydrogen coupling in ethane.  相似文献   

12.
Relativistic density functional theory (DFT) calculations of nuclear spin-spin coupling constants and shielding constants have been performed for selected transition metal (11th and 12th group of periodic table) and thallium cyanides. The calculations have been carried out using zeroth-order regular approximation (ZORA) Hamiltonian and four-component Dirac-Kohn-Sham (DKS) theory with different nonrelativistic exchange-correlation functionals. Two recent approaches for representing the magnetic balance (MB) between the large and small components of four-component spinors, namely, mDKS-RMB and sMB, have been employed for shielding tensor calculations and their results have been compared. Relativistic effects have also been analysed in terms of scalar and spin-orbit contributions at the two-component level of theory, including discussion of heavy-atom-on-light-atom effects for (1)J(CN), σ(C), and σ(N). The results for molecules containing metals from 4th row of periodic table show that relativistic effects for them are small (especially for spin-spin coupling constants). The biggest effects are observed for the 6th row where nonrelativistic theory reproduces only about 50%-70% of the two-component ZORA results for (1)J(MeC) and about 75% for heavy metal shielding constants. It is important to employ a full Dirac picture for calculations of heavy metal shielding constants, since ZORA reproduces only 75%-90% of the DKS results. Smaller discrepancies between ZORA-DFT and DKS are observed for nuclear spin-spin coupling constants. No significant differences are observed between the results obtained using mDKS-RMB and sMB approaches for magnetic balance in four-component calculations of the shielding constants.  相似文献   

13.
A solid-state nuclear magnetic resonance and zeroth-order regular approximation density functional theory, ZORA-DFT, study of one-bond nuclear spin-spin coupling between group-14 nuclei and quadrupolar 35/37Cl nuclei in triphenyl group-14 chlorides, Ph3XCl (X = C, Si, Ge, Sn and Pb), is presented. This represents the first combined experimental and theoretical systematic study of spin-spin coupling involving spin-pairs containing quadrupolar nuclei. Solid-state NMR spectra have been acquired for all compounds in which X has a spin-1/2 isotope--13C, 29Si, [117/119]Sn and 207Pb-at applied magnetic fields of 4.70, 7.05 and 11.75 T. From simulations of these spectra, values describing the indirect spin-spin coupling tensor-the isotropic indirect spin-spin coupling constant, 1J(X, 35/37Cl)iso and the anisotropy of the J tensor, Delta1J(X, 35/37Cl)--have been determined for all but the lead-chlorine spin-pair. To better compare the indirect spin-spin coupling parameters between spin-pairs, 1J(iso) and Delta1J values were converted to their reduced coupling constants, 1K(iso) and Delta1K. From experiment, the sign of 1K(iso) was found to be negative while the sign of Delta1K is positive for all spin-pairs investigated. The magnitude of both 1K(iso) and Delta1K was found to increase as one moves down group-14. Theoretical values of the magnitude and sign of 1K(iso) and Delta1K were obtained from ZORA-DFT calculations and are in agreement with the available experimental data. From the calculations, the Fermi-contact mechanism was determined to provide the largest contribution to 1K(iso) for all spin-pairs while spin-dipolar and paramagnetic spin-orbit mechanisms make significant contributions to the anisotropy of K. The inclusion of relativistic effects was found to influence K(Sn,Cl) and K(Pb,Cl).  相似文献   

14.
There have been significant advances in the calculation and interpretation of indirect nuclear spin-spin coupling (J) tensors during the past few years; however, much work remains to be done, especially for molecules containing heavy atoms where relativistic effects may play an important role. Many J tensors cannot be explained based solely on a nonrelativistic Fermi-contact mechanism. In the present work, the relativistic zeroth-order regular approximation density-functional (ZORA-DFT) implementation for the calculation of J has been applied to the complete series of homonuclear and heteronuclear diatomic halogen molecules: F(2), Cl(2), Br(2), I(2), At(2), ClF, BrF, IF, ClBr, ClI, and BrI. For all of these compounds, the reduced isotropic coupling constant (K(iso)) is positive and the reduced anisotropic coupling constant (DeltaK) is negative. With the exception of molecular fluorine, the magnitudes of K(iso) and DeltaK are shown to increase linearly with the product of the atomic numbers of the coupled nuclei. ZORA-DFT calculations of J for F(2) and ClF are in excellent agreement with the results obtained from multiconfigurational self-consistent-field calculations. The relative importance of the various coupling mechanisms is approximately constant for all of the compounds, with the paramagnetic spin-orbit term being the dominant contributor to K(iso), at approximately 70-80%. Available experimental stimulated resonant Raman spectroscopy data are exploited to extract the complete J((127)I,(127)I) tensor for iodine in two rotational states. The dependence of K(iso) and DeltaK on bond length and rovibrational state is investigated by using calculated results in combination with available experimental data. In addition to providing new insights into periodic trends for J coupling tensors, this work further demonstrates the utility of the ZORA-DFT method and emphasizes the necessity of spin-orbit relativistic corrections for J calculations involving heavy nuclei.  相似文献   

15.
The absolute values of spin-spin couplings between (29)Si nuclei in siloxanes, (2)J((29)Si-O-(29)Si), were determined. The couplings are small and cover a narrow range of values (0-5 Hz). The coupling constants depend on the branching or on the number of electronegative substituents on the Si-O-Si moiety.  相似文献   

16.
NMR J-couplings across hydrogen bonds reflect the static and dynamic character of hydrogen bonding. They are affected by thermal and solvent effects and can therefore be used to probe such effects. We have applied density functional theory (DFT) to compute the NMR (n)J(N,H) scalar couplings of a prototypical Chagas disease drug (metronidazole). The calculations were done for the molecule in vacuo, in microsolvated cluster models with one or few water molecules, in snapshots obtained from molecular dynamics simulations with explicit water solvent, and in a polarizable dielectric continuum. Hyperconjugative and electrostatic effects on spin-spin coupling constants were assessed through DFT calculations using natural bond orbital (NBO) analysis and atoms in molecules (AIM) theory. In the calculations with explicit solvent molecules, special attention was given to the nature of the hydrogen bonds formed with the solvent molecules. The results highlight the importance of properly incorporating thermal and solvent effects into NMR calculations in the condensed phase.  相似文献   

17.
The proton NMR spectrum of the doubly enriched acetophenone-carbonyl,methyl-13C2 isotopomer dissolved in a liquid-crystalline solvent (LXNMR) was analyzed to yield a data set of 19 dipolar couplings. The presence of so many couplings, and in particular the dependence of some of them on the acetyl carbons enabled the investigation of the structure of the acetyl moiety and of possible cooperative motions about the aryl-carbonyl and carbonyl-methyl bonds. Methodological aspects, and approximations relating to the application of the vibrational correction procedure in the presence of large-amplitude torsional motions, are discussed. Results show that it is possible to discriminate between a continuous and a discrete conformer distribution about the angle phi(1) but not among a few proposed continuous shapes of U(iso)({phi}). In this study, the use of dipolar couplings with a non-negligible contribution from the indirect spin-spin coupling tensor J, (D(C8C9) in our case), for structural determination is extended from rigid to flexible molecules. The 1/2J(aniso)(C8C9) contribution was derived theoretically using the density functional theory linear response (DFT-LR) first-principles calculation of the J(C8C9) spin-spin coupling tensor.  相似文献   

18.
The structures of three closely related heterodimetallic cyano complexes, [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3), formed in reactions between [Pt(II)(CN)(4)](2)(-) and Tl(III) cyano complexes, have been studied in aqueous solution. Multinuclear NMR data ((205)Tl, (195)Pt, and (13)C) were used for identification and quantitative analysis. X-ray absorption spectra were recorded at the Pt and Tl L(III) edges. The EXAFS data show, after developing a model describing the extensive multiple scattering within the linearly coordinated cyano ligands, short Pt-Tl bond distances in the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes: 2.60(1), 2.62(1), and 2.64(1) A for n = 1-3, respectively. Thus, the Pt-Tl bond distance increases with increasing number of cyano ligands on the thallium atom. In all three complexes the thallium atom and five cyano ligands, with a mean Pt-C distance of 2.00-2.01 A, octahedrally coordinate the platinum atom. In the hydrated [(NC)(5)Pt-Tl(CN)(H(2)O)(4)](-) species the thallium atom coordinates one cyano ligand, probably as a linear Pt-Tl-CN entity with a Tl-C bond distance of 2.13(1) A, and possibly four loosely bound water molecules with a mean Tl-O bond distance of about 2.51 A. In the [(NC)(5)Pt-Tl(CN)(2)](2)(-) species, the thallium atom probably coordinates the cyano ligands trigonally with two Tl-C bond distances at 2.20(2) A, and in [(NC)(5)Pt-Tl(CN)(3)](3)(-) Tl coordinates tetrahedrally with three Tl-C distances at 2.22(2) A. EXAFS data were reevaluated for previously studied mononuclear thallium(III)-cyano complexes in aqueous solution, [Tl(CN)(2)(H(2)O)(4)](+), [Tl(CN)(3)(H(2)O)], and [Tl(CN)(4)](-), and also for the solid K[Tl(CN)(4)] compound. A comparison shows that the Tl-C bond distances are longer in the dinuclear complexes [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3) for the same coordination number. Relative oxidation states of the metal atoms were estimated from their (195)Pt and (205)Tl chemical shifts, confirming that the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes can be considered as metastable intermediates in a two-electron-transfer redox reaction from platinum(II) to thallium(III). Vibrational spectra were recorded and force constants from normal-coordinate analyses are used for discussing the delocalized bonding in these species.  相似文献   

19.
A new method for calculating the indirect nuclear spin-spin coupling constant within the regular approximation to the exact relativistic Hamiltonian is presented. The method is completely analytic in the sense that it does not employ numeric integration for the evaluation of relativistic corrections to the molecular Hamiltonian. It can be applied at the level of conventional wave function theory or density functional theory. In the latter case, both pure and hybrid density functionals can be used for the calculation of the quasirelativistic spin-spin coupling constants. The new method is used in connection with the infinite-order regular approximation with modified metric (IORAmm) to calculate the spin-spin coupling constants for molecules containing heavy elements. The importance of including exact exchange into the density functional calculations is demonstrated.  相似文献   

20.
The NMR properties (chemical shift and spin-spin coupling constants) of (129)Xe in covalent compounds and weakly bound complexes have been investigated by DFT methods including relativistic effects. For covalent species, a good agreement between experimental and calculated results is achieved without scalar relativistic effects, but their inclusion (with a triple-zeta, double-polarization basis set) leads to some improvement in the quality of the correlation. The spin-orbit coupling term has a significant effect on the shielding constant, but makes a small contribution to the chemical shift. Coupling constants contain substantial contributions from the Fermi contact and paramagnetic spin-orbit terms; unlike light nuclei the spin-dipole term is also large, whereas the diamagnetic spin-orbit term is negligible. For van der Waals dimers, the dependence of the xenon chemical shift and anisotropy is calculated as a function of the distance. Small (<1 Hz) but non-negligible through-space coupling constants between (129)Xe and (13)C or (1)H are predicted. Much larger couplings, of the order of few Hz, are calculated between xenon and (17)O in a model silicate residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号