首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

2.
Sulphito Cobalt(III) Ammines. III. Hydrogensulphito Cobalt(III) Ammines Concentrated acids react with [CoSO3(NH3)5]+ salts hydrogen- sulphitopentaamminecobalt(III) complexes. [Co(HSO3)(NH3)5]Cl2, [Co(HSO3)(NH3)5]Br2 and [Co(HSO3)(NH3)5](HSO4)2·H2O have been isolated. These substances are yellow coloured in contrast to an earlier work which reported red colour. Furthermore, the hydrogensulphitoacidotetreaammine complexes [Co(HSO3)Cl(NH3)4]Cl, [Co(HSO3)Cl(NH3)4]ClO4·H2O, [Co(HSO3)Br(NH3)4]Br and [Co(HSO3) CN(NH3)4]Cl habe been prepared. [Co(HSO3)Br(NH3)4]Br is losing spontaneously HBr forming [CoSO3Br(NH3)4]. The neutral complex [Co(HSO3)SO3(NH3)4]·1/2H2O has been obtained from cis- NH4[Co(SO3)2(NH3)4] and HCl. The absorption spectra in the IR, visible and UV region are reported and discussed. The HSO3 group is coordinated to Co through the S atom. The Co? S bond is weaker than in the sulphito complexes as concluded from the RAMAN spectrum. In the new complexes, the hydrogensulphito ligand causes a minor trans effect than the sulphito ligand.  相似文献   

3.
Attempts to synthesize complexes of group 6 carbonyl compounds [M(CO)6] (M = Cr, Mo, W) with the carbone C(PPh3)2 ( 1 ) via the photo chemically created adducts [(CO)5M(THF)] lead to quantitative formation of the salts [HC(PPh3)2]2[M2(CO)10] ( 2 , Cr; 3 , Mo; 4 , W). Alternatively, a long-time thermal reaction of [Mo(CO)6] performed with 1 in THF generates a series of products initiated by a Wittig-type reaction. In addition to 3 , minor amounts of [(CO)5MoCCPPh3] ( 8 ), [(CO)5MoO2CC{PPh3}2] ( 5 ), and the carbonate complexes [HC(PPh3)2]2[(CO)5Mo(CO3)Mo(CO)4] ( 6 ) and [HC(PPh3)2]2[(CO)4Mo(CO3)Mo(CO)4] ( 7 ) were found. Compounds 2 , 3 , 5 , 6 , and 7 were characterized by X-ray analyses, 31P NMR, and IR spectroscopy. The water, necessary for the formation of the carbonate, stems from decomposition of THF.  相似文献   

4.
The reaction of the nitrosyl carbonyl complexes [Fe(NO)2(CO)2] and [Co(NO)(CO)3] with the decacarbonyldimetalates [M2(CO)10]2– (M = Cr and Mo) in THF as the solvent at room temperature was investigated. Thereby a substitution of one nitrosyl ligand towards carbon monoxide was observed in each case. Both reactions afforded the known metalate complexes [Fe(NO)(CO)3] and [Co(CO)4], respectively. These species were isolated as their corresponding PPN salts [PPN+ = bis(triphenylphosphane)iminium cation] in nearly quantitative yields. The products were unambiguously identified by their IR spectroscopic and elemental analytic data as well as by their characteristic colors and melting points.  相似文献   

5.
Transition Metal Phosphido Complexes. XIII. P-functional Phosphido-Bridged Heterobimetallic Complexes with and without a Metal-Metal Bond; P(SiMe3)2-Bridged cp(CO)xFe Derivatives cp(CO)2FeP(SiMe3)2 1 reacts with the carbonyl nitrosyl complexes Co(CO)3(NO), Fe(CO)2(NO)2,Mn(CO)(NO)3 substituting a CO ligand and with the THF complexes M′(CO)5THF(M′ = Cr, Mo, W), Mncp(CO)2THF MnMecp(CO)2 which can be obtained in solution substituting the THF ligand to give the phosphido-bridged bimetallic complexes cp(CO)2Fe[μ-P(SiMe3)2]M′Lm 2 (M′Lm = Co(CO)2(NO) b , Fe(CO)(NO)2 c , Mn(NO)3 d , Cr(CO)5 f , Mo(CO)5 g , W(CO)5 h , Mncp(CO)2 i , MnMecp(CO)2 j ). Solutions of Li(Me3Si)2PM′Lm 4e–l (M′Lm = Fe(CO)4 e , Crcp(CO)(NO) k , Vcp(CO)3 l ) are available by a selective cleavage reaction of a Si? P bond in the complexes (Me3Si)3PM′Lm 3e–l using n-BuLi. Reactions of cp(CO)2FeBr with 4e–l give the bimetallic complexes 2e–l . The open-chain complexes 2c, 2f, 2h–k undergo a photochemical decarbonylation reaction to form the phosphido-bridged bimetallic complexes cp(CO)Fe[μ-CO, μ-P(SiMe3)2]M′Lm?1(Fe-M′) 5 (M′Lm?1 = Fe(NO)2 c , Cr(CO)4 f , W(CO)4 h , Mncp(CO) i , MnMecp(CO) j , Crcp(NO) k ) containing a metal-metal bond. Equilibria between various isomers can partially be observed in solutions of the complexes 5. I.R., N.M.R., and mass spectral data are reported.  相似文献   

6.
Metal Complexes with Anionic Ligands of Elements of the Main Group IV. VII(1) Substitution Reactions of Carbonylnitrosyl and Nitrosyltrifluorophosphine Transition Metal Complexes with Trichlorostannid L-substitution by [SnCl3]? occurs if the nitrosyl complexes Co(NO)L3 and Fe(NO)2L2 (L = CO or PF3) are reacted with [N(C2H5)4][SnCl3] thermically in tetrahydrofuran as well as photochemically induced in methylenechloride. The complexes Co(NO)L3 yield the mono-substitution products [N(C2H5)4][Co(NO)L2SnCl3], with the iron compounds Fe(NO)2L2 only the disubstituted derivative [N(C2H5)4]2[Fe(NO)2(SnCl3)2] can be isolated. On the other hand CO substitution at (π-C5H5)Mo(NO)(CO)2 by UV irradiation did not suceed both with [SnCl3]? and with PF3. From the IR-spectroscopic data a leastly with PCl3 comparable π-acceptor ability is derived for the trichlorostannido ligand.  相似文献   

7.
The sole and unexpected products from the reactions of a variety of lead (II) and lead (IV) compounds with [Co2(CO)6(L)2] complexes (L = tertiary arsine, phosphine, or phosphite) in refluxing benzene solution are the blue, air-stable percobaltoplumbanes [Pb{Co(CO)3(L)}4]. These have also been obtained from the reaction of Na[Co(CO)3(L)] (L  PBu3n) with lead (II) acetate which with Na[Fe(CO)2(NO)(L)] forms the isoelectronic [Pb{Fe(CO)2(NO)(L)}4] [L  P(OPh)3]. The IR spectra of the complexes in the v(CO) and v(NO) regions are consistent with tetrahedral PbCo4 or PbFe4 fragments, trigonal bipyramidal coordination about the cobalt or iron atoms and linear PbCoAs, PbCoP, or PbFeP systems. Unlike [Pb{Co(CO)4}4], our complexes do not dissociate to [Co(CO)3(L)]? or [Fe(CO)2(NO)(L)]? ions when dissolved in donor solvents.  相似文献   

8.
Summary Equimolar quantities of [MI2(CO)3(NCMe)2] (M = Mo or W) and C3H4N2 (pyrazole) react in CH2C12 at room temperature to give the iodo-bridged dimers [M(μ-I) (CO)3(C3H4N2)]2 (1) and (2). Two equivalents of C3H4N2 react with [MI2(CO)3(NCMe)2] (M = Mo or W) to give the bis(pyrazole) complexes [MI2(CO)3(C3H4N2)2] (3) and (4) in good yield. Three and four equivalents of pyrazole react with [MoI2(CO)3(NCMe)2] to give the cationic complexes [MoI(CO)3(C3H4N2)3]I (5) and [MoI(CO)2(C3H4N2)4]I (6), respectively. The mixed ligand complexes [MI2(CO)3(C3H4N2)L] (M = Mo or W; L = PPh3, AsPh3 or SbPh3) (7)-(12) are prepared by reacting equimolar amounts of [MI2(CO)3(NCMe)2] and L in CH2C12 at room temperature, followed by an in situ reaction with one equivalent of C3H4N2. The MoSnCl3 complex [MoCl(SnCl3)(CO)3(C3H4N2)2] (13) is prepared in an analogous manner using acetone as the solvent, whilst the mixed ligand compound [MoCl(SnQ3)(CO) 3(C3H4N2)(PPh3)] (14) was prepared by treating the dimeric complex [Mo(μ-Cl)(SnCl3)(CO)3(PPh3)]2 with two equivalents of C3H4N2. All the new complexes were characterised by elemental analysis (carbon, hydrogen and nitrogen), i.r. and 1H n.m.r. spectroscopy.  相似文献   

9.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

10.
Interaction of 1-(2-pyridylazo)-2-naphthol (PAN) with [Mo(CO)6] in air resulted in formation of the tricarbonyl oxo-complex [Mo(O)(CO)3(PAN)], 1. The dicarbonyl complex [Ru(CO)2(PAN)], 3, was obtained from the reaction of [Ru3(CO)12] with PAN. In presence of triphenyl phosphine (PPh3), the reaction of PAN with either Mo(CO)6 or Ru3(CO)12 gave [Mo(CO)3(PAN)(PPh3)], 2, and [Ru(CO)2(PAN)(PPh3)], 4. All the complexes were characterized by elemental analysis, mass spectrometry, IR, and NMR spectroscopy. The thermal properties of the complexes were also investigated by thermogravimetry.  相似文献   

11.
Interaction of the tripodal ligand N-[(2-pyridyl)methyl]-2,2′-dipyridylamine (pmdpa) with [Mo(CO)6] under reduced pressure gave two complexes [Mo(CO)4(pmdpa)] and [Mo(CO)2(pmdpa)2], depending on the mole ratio and reaction time. The i.r. spectra of the two complexes gave patterns in the metal carbonyl region confirming the proposed structures. Reaction of [Ru3(CO)12] with pmdpa in benzene gave the mononuclear complex [Ru(CO)3(pmdpa)]. The electronic absorption spectra of the complexes exhibited visible transitions due to metal-to-ligand charge transfers. Electrochemical investigation of the complexes showed some irreversible and quasi-reversible redox reactions due tautomeric interconversions through electron transfer.  相似文献   

12.
The chemistry of [Re(CO)(NO)L2] fragments (L ? phosphorus donor) was explored. Starting from [Re(CO)5Cl] the synthesis of [Re2Cl2(μ-Cl)2(CO)4(NO)2] ( 1 ) was accomplished via the preparation of [Et4N]2[Re2Cl2(μ-Cl)2(CO)6] and nitrosylation of this compound with [NO][BF4]. Complex 1 was converted to [RecL2(CO)(NO)L2] complexes 2 ( a L = (MeO)3P; b L = (EtO)3P; c L = (i-PrO)3P; d L ? Me3P; e L ? Et3P; f L ? Cy3P) by heating with L in MeCN. In the case of the reaction of L = (MeO)3P, a trisubstitued compound mer-{ReCl2(NO)[P(OMe)3]3} 3 was also obtained. Replacement of the Cl ligands in 2a–e with Me groups was achieved by reacting them with MeLi in Et2O yielding cis, trans-[Re(CO)(NO)Me2L2]complexes 4a–e . Reaction of 2a–e with Li[BHEt3] led to substitution of one Cl by an H ligand with formation of [ReCl(CO)H(NO)L2] compounds 5a–;e , displaying trans-H,NO geometries. The hydride-transfer agent Na[AlH2(OCH2CH2OCH3)2] transformed 2 into the cis-dihydride systems [Re(CO)H2(NO)L2] 6a–f . Reductive carbonylation of 2a–d in the presence of Na/Hg and CO gave pentacoordinate [Re(CO)2(NO)L2] complexes 7b–d , and under comparable conditions the Cl substituents of 2b–f were replaced by tolane using Mg or t-BuLi giving trigonal bipyramidal [Re(CO)(NO)L2(PhC?CPh)] compounds 8b–f . Complexes 5c , 6a , and 8d were characterized by X-ray crystal-structure analysis.  相似文献   

13.
The complex [Fe2(SMe)2(CO)6] undergoes stepwise exchange with Et2S2 to yield successively [Fe2(SMe)(SEt)(CO)6] and [Fe2(SEt)2(CO)6]. Carbonyl complexes [Fe2(SR)2(CO)6] are efficiently converted to the nitrosyls [Fe2(SR)2(NO)4] by the action either of NO gas or of methanolic sodium nitrite: the analogous species [Fe2S2(CO)6], [Fe2S2(CO)6]2?, and [Fe3S2(CO)9] all, with methanolic nitrite, yield [Fe4S3(NO)7]?. This anion, [Fe4S3(NO)7]?, reacts with sulphur to give the cubane-like [Fe4S4(NO)4]: the synthesis of its selenium analogue, [Fe4Se3(NO)7]? is described. The complexes [Fe2(SR)2(NO)4] (R = Me, Et, Prn, Pri, But, PhCH2) all consist of two isomers in solution, presumed to have structures of C2h and C2v, symmetry: activation parameters for the C2h?C2v reaction are reported.  相似文献   

14.
Six heteroatomic complexes of diphenylphosphine derivatives with heavy metals (Ni, Pd, Pt, Mo and W) were prepared and subjected to elemental spectral and thermal analyses. The different physicochemical methods used indicated the formulae [NiCl2(dppm)], [PtCl2(dppm)] and [Mo(CO)4(dppm)] (dppm=bis(diphenylphosphine)methane, the dppm in these complexes behaving as a bidentate ligand), [Pd(CN)2(dppm)2] (in which the dppm behaves as a monodentate ligand), [W(CO)4(dppe)2] and [Mo(CO)4(dppe)2] (dppe=1,1-bis(diphenylphosphine)ethene, the dppe in these complexes behaving as a bidentate ligand). The thermal analyses (DTA and TG) confirmed these structures. The results of spectral and thermal analyses were compared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and of iodination of a number of [M(CO)nL6-n] complexes (M = Cr, Mo, W; n = 3, 4; L = py, MeCN) have led to values for the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?) at 25°C: fac-[Mo(CO)3py3](275 ± 12), fac-[Mo(CO)3(NCCH3)3]  (410 ± 12), fac-[W(CO)3py3](250 ± 12), fac-[W(CO)3(NCCH3)3](405 ± 12) and cis-[Cr(CO)4py2](505 ± 20). From these and other data, including estimated heats of sublimation, the bond enthalpy contributions of the various metalligand bonds in the gaseous metal complexes were evaluated as follows (values in kJ mol?): D(Crpy) 102, D(Mopy) 146, DWPy) 173, D(Mo7z.sbnd;NCMe) 135 and D(WNCMe) 169. For a given metal the bond enthalpy contribution decreased in the order D(MCO) > D(Mpy) > D(Mz.sbnd;NCMe). This order is related to the σ- and π-bonding character of the ligand.  相似文献   

16.
The prochiral polypyrazolylborate complexes [R---B(3,5-X2-pz)3]Mo(CO)2(NO) (R = pz, X = H; R = H, X = CH3), react with the optically active aminophosphines L = (C6H5)2PNR′CH(CH3)(C6H5) (R′= H, CH3), to give the monosubstitution products [R---B(3,5-X2-pz)3]Mo(CO)(NO)L, in which the metal atom is a new chiral center. The separation of the diastereoisomers, differing only in the Mo configuration, by preparative liquid chromatography and fractional crystallization is described, their CD and 1H NMR spectra and their reactivities are discussed and compared with those of the cyclopentadienyl analogues.  相似文献   

17.
The aprotic acids HgCl2 and SnX4 (X  Cl, Br) react with the π-complexes C5H5M(CO)(NO)(L) (II, M  Mo W; L  PPh3) by attack at the metal center. With HgCl2 complexes II yield stable neutral 1:1 adducts CpM(CO)(NO)(L)HgCl2(III). In the case of SnCl4, complexes II initially produce the ionic 1:2 adducts [CpM(CO)(NO)(L)(SnCl3)]+SnCl5-(IV) which, as a result of oxidative elimination of CO, turn into the neutral complexes CpM(NO)(L)(SnCl3)(Cl)(V). In reactions of II with SnBr4 the corresponding CpM(NO)(L)(SnB3)(Br) complexes are formed directly. The formation of III–V is accompanied by a considerable increase of the frequencies ν(CO) and ν(NO). The structures of the complexes IV (M  Mo) and V (M  Mo) have been established by an X-ray structure analysis.  相似文献   

18.
The oxidation of Fe(CO)5 with the [NO]+ salt of the weakly coordinating perfluoroalkoxyaluminate anion [F‐{Al(ORF)3}2]? (RF=C(CF3)3) leads to stable salts of the 18 valence electron (VE) species [Fe(CO)4(NO)]+ and [Fe(CO)(NO)3]+ with the Enemark–Feltham numbers of {FeNO}8 and {FeNO}10. This finally concludes the triad of heteroleptic iron carbonyl/nitrosyl complexes, since the first discovery of the anionic ([Fe(CO)3(NO)]?) and neutral ([Fe(CO)2(NO)2]) species over 80 years ago. Both complexes were fully characterized (IR, Raman, NMR, UV/Vis, scXRD, pXRD) and are stable at room temperature under inert conditions over months and may serve as useful starting materials for further investigations.  相似文献   

19.
Preparation, Redox Properties, and Structures of Mononuclear ?Simple”? Mono-, and Dinitrosyl Complexes of Molybdenum with Hydroxylamido(?1), Oximato, Halogeno, and Pseudohalogeno Ligands The compounds [(C6H5)4P]2[Mo(NO)(H2NO)(NCS)4] 1 , [(C6H5)4P]2 [Mo(NO)((C2H5)2-CNO)(NCS)4] 2 , [(C6H5)4P]2[Mo(NO)2(NCS)4] · CH3OH, 3 [(C6H5)4P]3[Mo(NO)(CN)5] · 2H2O 4 , Cs2[Mo(NO)Cl4(H2O)] 5 and Cs2[Mo(NO)Cl5] 6 were prepared and characterized by complete X-ray structure analysis. All complexes have a nearly linear MoNO moiety, whereas in the anions of 1 and 2 a pentagonal-bipyramidal, in 3 — 6 an octahedral coordination sphere of Mo is present. Complexes with {MoNO}n configuration (n = 4, 5, 6) can be converted into each other by remarkable redox-reactions. Some novel reactions of the hydroxylamido(?1)-ligand (formation of 2 and 3 ) are discussed very shortly.  相似文献   

20.
A series of agostic σ‐borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room‐temperature reaction of [Cp*Mo(CO)3Me], 1 with Li[BH3(EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2(μ‐H)BH2EPh] in good yields. With 2‐mercapto‐benzothiazole, an N,S‐carbene‐anchored σ‐borate complex [Cp*Mo(CO)2BH3(1‐benzothiazol‐2‐ylidene)] ( 5 ) was isolated. Further, a transmetalation of the B‐agostic ruthenium complex [Cp*Ru(μ‐H)BHL2] ( 6 , L=C7H4NS2) with [Mn2(CO)10] affords a new B‐agostic complex, [Mn(CO)3(μ‐H)BHL2] ( 7 ) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3] unit. Natural‐bond‐orbital analyses of 5–7 indicate significant delocalization of the electron density from the filled σB?H orbital to the vacant metal orbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号