首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let k1, k2,…, kn be given integers, 1 ? k1 ? k2 ? … ? kn, and let S be the set of vectors x = (x1,…, xn) with integral coefficients satisfying 0 ? xi ? ki, i = 1, 2, 3,…, n. A subset H of S is an antichain (or Sperner family or clutter) if and only if for each pair of distinct vectors x and y in H the inequalities xi ? yi, i = 1, 2,…, n, do not all hold. Let |H| denote the number of vectors in H, let K = k1 + k2 + … + kn and for 0 ? l ? K let (l)H denote the subset of H consisting of vectors h = (h1, h2,…, hn) which satisfy h1 + h2 + … + hn = l. In this paper we show that if H is an antichain in S, then there exists an antichain H′ in S for which |(l)H′| = 0 if l < K2, |(K2)H′| = |(K2)H| if K is even and |(l)H′| = |(l)H| + |(K ? l)H| if l>K2.  相似文献   

2.
Let k1 ? k2? ? ? kn be given positive integers and let S denote the set of vectors x = (x1, x2, … ,xn) with integer components satisfying 0 ? x1 ? kni = 1, 2, …, n. Let X be a subset of S (l)X denotes the subset of X consisting of vectors with component sum l; F(m, X) denotes the lexicographically first m vectors of X; ?X denotes the set of vectors in S obtainable by subtracting 1 from a component of a vector in X; |X| is the number of vectors in X. In this paper it is shown that |?F(e, (l)S)| is an increasing function of l for fixed e and is a subadditive function of e for fixed l.  相似文献   

3.
Let H=(N,E,w) be a hypergraph with a node set N={0,1,…,n-1}, a hyperedge set E⊆2N, and real edge-weights w(e) for eE. Given a convex n-gon P in the plane with vertices x0,x1,…,xn-1 which are arranged in this order clockwisely, let each node iN correspond to the vertex xi and define the area AP(H) of H on P by the sum of the weighted areas of convex hulls for all hyperedges in H. For 0?i<j<k?n-1, a convex three-cut C(i,j,k) of N is {{i,…,j-1}, {j,…,k-1}, {k,…,n-1,0,…,i-1}} and its size cH(i,j,k) in H is defined as the sum of weights of edges eE such that e contains at least one node from each of {i,…,j-1}, {j,…,k-1} and {k,…,n-1,0,…,i-1}. We show that the following two conditions are equivalent:
AP(H)?AP(H) for all convex n-gons P.
cH(i,j,k)?cH(i,j,k) for all convex three-cuts C(i,j,k).
From this property, a polynomial time algorithm for determining whether or not given weighted hypergraphs H and H satisfy “AP(H)?AP(H) for all convex n-gons P” is immediately obtained.  相似文献   

4.
The Turán number T(n, l, k) is the smallest possible number of edges in a k-graph on n vertices such that every l-set of vertices contains an edge. Given a k-graph H = (V(H), E(H)), we let Xs(S) equal the number of edges contained in S, for any s-set S?V(H). Turán's problem is equivalent to estimating the expectation E(Xl), given that min(Xl) ≥ 1. The following lower bound on the variance of Xs is proved:
Var(Xs)?mmn?2ks?kns?1nk1
, where m = |E(H)| and m = (kn) ? m. This implies the following: putting t(k, l) = limn→∞T(n, l, k)(kn)?1 then t(k, l) ≥ T(s, l, k)((ks) ? 1)?1, whenever sl > k ≥ 2. A connection of these results with the existence of certain t-designs is mentioned.  相似文献   

5.
Let 1?k1?k2?…?kn be integers and let S denote the set of all vectors x = (x1, …, xn with integral coordinates satisfying 0?xi?ki, i = 1,2, …, n; equivalently, S is the set of all subsets of a multiset consisting of ki elements of type i, i = 1,2, …, n. A subset X of S is an antichain if and only if for any two vectors x and y in X the inequalities xi?yi, i = 1,2, …, n, do not all hold. For an arbitrary subset H of S, (i)H denotes the subset of H consisting of vectors with component sum i, i = 0, 1, 2, …, K, where K = k1 + k2 + …kn. |H| denotes the number of vectors in H, and the complement of a vector x?S is (k1-x1, k2-x2, …, kn -xn). What is the maximal cardinality of an antichain containing no vector and its complement? The answer is obtained as a corollary of the following theorem: if X is an antichain, K is even and|(12K)X| does not exceed the number of vectors in (12K)S with first coordinate different from k1, then
i=0Ki≠12K|(i)X||(i)S|+|(12K)X||(12K-1)S|?1
.  相似文献   

6.
Disjoint triangles and quadrilaterals in a graph   总被引:1,自引:0,他引:1  
Jin Yan 《Discrete Mathematics》2008,308(17):3930-3937
Let G be a simple graph of order n and s and k be two positive integers. Brandt et al. obtained the following result: If s?k, n?3s+4(k-s) and σ2(G)?n+s, then G contains k disjoint cycles C1,…,Ck satisfying |Ci|=3 for 1?i?s and |Ci|?4 for s<i?k. In the above result, the length of Ci is not specified for s<i?k. We get a result specifying the length of Ci for each s<i?k if n?3s+4(k-s)+3.  相似文献   

7.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

8.
An α=(α1,…,αk)(0?αi?1) section of a family {K1,…,Kk} of convex bodies in Rd is a transversal halfspace H+ for which Vold(KiH+)=αi⋅Vold(Ki) for every 1?i?k. Our main result is that for any well-separated family of strictly convex sets, the space of α-sections is diffeomorphic to Sdk.  相似文献   

9.
Let Γ be a connected simple graph, let V(Γ) and E(Γ) denote the vertex-set and the edge-set of Γ, respectively, and let n=|V(Γ)|. For 1≤in, let ei be the element of elementary abelian group which has 1 in the ith coordinate, and 0 in all other coordinates. Assume that V(Γ)={ei∣1≤in}. We define a set Ω by Ω={ei+ej∣{ei,ej}∈E(Γ)}, and let CayΓ denote the Cayley graph over with respect to Ω. It turns out that CayΓ contains Γ as an isometric subgraph. In this paper, the relations between the spectra of Γ and CayΓ are discussed. Some conditions on the existence of Hamilton paths and cycles in Γ are obtained.  相似文献   

10.
On 2-factors with cycles containing specified edges in a bipartite graph   总被引:1,自引:0,他引:1  
Let k≥1 be an integer and G=(V1,V2;E) a bipartite graph with |V1|=|V2|=n such that n≥2k+2. In this paper it has been proved that if for each pair of nonadjacent vertices xV1 and yV2, , then for any k independent edges e1,…,ek of G, G has a 2-factor with k+1 cycles C1,…,Ck+1 such that eiE(Ci) and |V(Ci)|=4 for each i∈{1,…,k}. We shall also show that the conditions in this paper are sharp.  相似文献   

11.
Let Fn be a binary form with integral coefficients of degree n?2, let d denote the greatest common divisor of all non-zero coefficients of Fn, and let h?2 be an integer. We prove that if d=1 then the Thue equation (T) Fn(x,y)=h has relatively few solutions: if A is a subset of the set T(Fn,h) of all solutions to (T), with r:=card(A)?n+1, then
(#)
h divides the numberΔ(A):=1?k<l?rδ(ξk,ξl),
where ξk=〈xk,yk〉∈A, 1?k?r, and δ(ξk,ξl)=xkylxlyk. As a corollary we obtain that if h is a prime number then, under weak assumptions on Fn, there is a partition of T(Fn,h) into at most n subsets maximal with respect to condition (#).  相似文献   

12.
Let Ωn be the set of all n × n doubly stochastic matrices, let Jn be the n × n matrix all of whose entries are 1/n and let σ k (A) denote the sum of the permanent of all k × k submatrices of A. It has been conjectured that if A ε Ω n and AJJ then gA,k (θ) ? σ k ((1 θ)Jn 1 θA) is strictly increasing on [0,1] for k = 2,3,…,n. We show that if A = A 1 ⊕ ⊕At (t ≥ 2) is an n × n matrix where Ai for i = 1,2, …,t, and if for each i gAi,ki (θ) is non-decreasing on [0.1] for kt = 2,3,…,ni , then gA,k (θ) is strictly increasing on [0,1] for k = 2,3,…,n.  相似文献   

13.
For α < ε0, Nα denotes the number of occurrences of ω in the Cantor normal form of α with the base ω. For a binary number-theoretic function f let B(K; f) denote the length n of the longest descending chain (α0, …, αn–1) of ordinals <ε0 such that for all i < n, Nαif (K, i). Simpson [2] called ε0 as slowly well ordered when B (K; f) is totally defined for f (K; i) = K · (i+ 1). Let |n| denote the binary length of the natural number n, and |n|k the k-times iterate of the logarithmic function |n|. For a unary function h let L(K; h) denote the function B (K; h0(K; i)) with h0(K, i) = K + |i| · |i|h(i). In this note we show, inspired from Weiermann [4], that, under a reasonable condition on h, the functionL (K; h) is primitive recursive in the inverse h–1 and vice versa.  相似文献   

14.
For integers n≥4 and νn+1, let ex(ν;{C3,…,Cn}) denote the maximum number of edges in a graph of order ν and girth at least n+1. The {C3,…,Cn}-free graphs with order ν and size ex(ν;{C3,…,Cn}) are called extremal graphs and denoted by EX(ν;{C3,…,Cn}). We prove that given an integer k≥0, for each n≥2log2(k+2) there exist extremal graphs with ν vertices, ν+k edges and minimum degree 1 or 2. Considering this idea we construct four infinite families of extremal graphs. We also see that minimal (r;g)-cages are the exclusive elements in EX(ν0(r,g);{C3,…,Cg−1}).  相似文献   

15.
Let σ=(σ1,…,σN), where σi=±1, and let C(σ) denote the number of permutations π of 1,2,…,N+1, whose up-down signature sign(π(i+1)-π(i))=σi, for i=1,…,N. We prove that the set of all up-down numbers C(σ) can be expressed by a single universal polynomial Φ, whose coefficients are products of numbers from the Taylor series of the hyperbolic tangent function. We prove that Φ is a modified exponential, and deduce some remarkable congruence properties for the set of all numbers C(σ), for fixed N. We prove a concise upper bound for C(σ), which describes the asymptotic behaviour of the up-down function C(σ) in the limit C(σ)?(N+1)!.  相似文献   

16.
Let F and G be two graphs and let H be a subgraph of G. A decomposition of G into subgraphs F1,F2,…,Fm is called an F-factorization of G orthogonal to H if FiF and |E(FiH)|=1 for each i=1,2,…,m. Gyárfás and Schelp conjectured that the complete bipartite graph K4k,4k has a C4-factorization orthogonal to H provided that H is a k-factor of K4k,4k. In this paper, we show that (1) the conjecture is true when H satisfies some structural conditions; (2) for any two positive integers r?k, Kkr2,kr2 has a Kr,r-factorization orthogonal to H if H is a k-factor of Kkr2,kr2; (3) K2d2,2d2 has a C4-factorization such that each edge of H belongs to a different C4 if H is a subgraph of K2d2,2d2 with maximum degree Δ(H)?d.  相似文献   

17.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

18.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

19.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

20.
Let Tn denote a binary tree with n terminal nodes V={υ1,…,υn} and let li denote the path length from the root to υi. Consider a set of nonnegative numbers W={w1,…,wn} and for a permutation π of {1,…,n} to {1,…,n}, associate the weight wi to the node υπ(i). The cost of Tn is defined as C(TnW)=Minπni=1wilπ(i).A Huffman tree Hn is a binary tree which minimizes C(TnW) over all possible Tn. In this note, we give an explicit expression for C(HnW) when W assumes the form: wi=k for i=1,…,n?m; wi=x for i=n?m+1,…,n. This simplifies and generalizes earlier results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号