首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be "polymerized" into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.  相似文献   

2.
张帅  秦博  徐江飞  张希 《化学通报》2020,83(7):578-587
超分子聚合物诞生于高分子化学与超分子化学的交叉融合,一般是指单体间通过非共价键作用连接形成的聚合物,并在溶液或体相中表现出类似聚合物的性质。目前超分子聚合物一般通过均相溶液聚合制备得到,但溶液中的超分子聚合是一个自发的组装过程,具有浓度依赖性,组装过程不易可控。为解决此问题,研究人员可以将超分子聚合从均相溶液转移到界面,在界面上可控地制备超分子聚合物。通过界面聚合制备超分子聚合物具有一些独特的优势,如可以制备得到分子量更高的超分子聚合物,易于制备一些缺陷少、面积大、有序的二维超分子聚合物等。本文基于在液-液、气-液和固-液三种界面上制备超分子聚合物的一些代表性工作,介绍了界面超分子聚合方法和应用,并展望其未来发展。  相似文献   

3.
Supramolecular polymers have attracted plenty of interest in the scientific community; however, developing controllable methods of supramolecular polymerization remains a serious challenge. This article reviews some recent developments of methods for supramolecular polymerization from controllable fabrication to living polymerization. Three facile methods with general applicability for controllable fabrication of supramolecular polymers have been established recently: the first method is a self‐sorting approach by manipulating ring–chain equilibrium based on noncovalent control over rigidity of monomers; the second is covalent polymerization from supramonomers formed by noncovalent interactions; and the third is supramolecular interfacial polymerization. More excitingly, living supramolecular polymerization has been achieved by two elegant strategies, including seeded supramolecular polymerization under pathway complexity control and chain‐growth supramolecular polymerization by metastable monomers. It is anticipated that this review may provide some guidance for precise fabrication of supramolecular polymers, leading to the construction of supramolecular polymeric materials with controllable architectures and functions.  相似文献   

4.
The problems of the formation of the supramolecular and molecular structure of polymers are considered. Based on kinetic investigations of trioxane polymerization, the thermodynamic approach to the problem of regulating the supramolecular and molecular structure of polymers during synthesis is formulated. A method for producing polymers with the given supramolecular structure is suggested. It is noted that the application of this method allows one to regulate the structure during the synthesis of three-dimensional cross-linked polymer systems as single-component, filled, reinforced, and other composite materials.  相似文献   

5.
苯乙烯阴离子本体聚合引发剂缔合及其机理的研究   总被引:1,自引:0,他引:1  
分别以正丁基锂和叔丁基锂为引发剂,采用自制管式流动反应装置,对较高温度下苯乙烯阴离子本体聚合动力学进行了研究.证实了正丁基锂主要以六元缔合结构形式引发聚合,并导致超分子团聚体的形成,从而使进一步的聚合因单体扩散受阻而受到限制,并伴随聚合转化率停滞平台(SCP)的产生.随后由于前期聚合累积的能量,使超分子结构完全解离.聚合温度越高,SCP持续时间越短.结果还表明,在正丁基锂引发剂中,存在一个以六元缔合结构为基础形成的更大的缔合体结构.原子力显微镜照片显示,超分子结构的直径分别为20~30nm和50~60nm.此外,在阴离子聚合过程中活性种的缔合结构只决定于初始引发剂的分子结构,而不同活性种缔合结构对阴离子聚合的链增长存在很大影响,从而解释了采用不同结构的锂系引发剂引发苯乙烯单体聚合时聚合速率存在巨大差异的原因.  相似文献   

6.
A new method of supramolecular polymerization at the water–oil interface is developed. As a demonstration, an oil‐soluble supramonomer containing two thiol end groups linked by two ureidopyrimidinone units and a water‐soluble monomer bearing two maleimide end groups are employed. Supramolecular interfacial polymerization can be implemented by a thiol–maleimide click reaction at the water–chloroform interface to obtain supramolecular polymeric films. The glass transition temperature of such supramolecular polymers can be well‐tuned by simply changing the polymerization time and temperature. It is highly anticipated that this work will provide a facile and general approach to realize control over supramolecular polymerization by transferring the preparation of supramolecular polymers from solutions to water–oil interfaces and construct supramolecular materials with well‐defined properties.  相似文献   

7.
Stereoselective and temporally controlled supramolecular polymerizations are ubiquitous in nature and are desirable attributes for the design of chiral, well-defined functional materials. Kinetically controlled, living supramolecular polymerization (LSP) has emerged recently for the synthesis of supramolecular polymers with controlled length and narrow dispersity. On the other hand, stringent design requirements for chiral-discriminating monomers precludes the stereoselective control of the supramolecular polymer structure. Herein, a synergetic stereo- and structural control of supramolecular polymerization by the realization of an unprecedented stereoselective seed-induced LSP is reported. Homochiral and seeded growth is demonstrated with bischromophoric naphthalene diimide (NDI) enantiomers with a chiral binaphthyl amine core, exhibiting strong self-recognition abilities and pathway complexity.  相似文献   

8.
A method of controllable supramolecular polymerization through kinetic trapping is developed. To this end, two bifunctional monomers with cucurbit[7]uril (CB[7]) and adamantane end groups were synthesized. The CB[7]‐containing monomer was presaturated with a pH‐responsive competitive guest for kinetic control. Then, the kinetics of supramolecular polymerization of the two monomers was easily controlled through the modulation of pH. As a result, supramolecular polymerization was kinetically trapped at certain stages, and supramolecular polymers with different molecular weights were obtained. It is anticipated that this research will enrich the methods of controllable supramolecular polymerization.  相似文献   

9.
超分子构筑调控合成结构规整的梯形聚合物及其应用研究   总被引:1,自引:1,他引:0  
综述了"超分子构筑调控的逐步偶联/聚合法",该方法将高分子化学与超分子化学相结合,利用多种类型的超分子弱键协同作用首先构筑预期的梯形超分子结构,再经聚合得到共价键梯形高分子.利用该方法合成了一系列结构规整的氧桥基和有机桥基梯形聚硅氧烷以及碳基梯形聚酯,并利用侧基间π-π叠加作用实现了对聚合物立体构型控制.扼要介绍了梯形聚合物在先进材料方面的应用,例如梯形聚硅氧烷液晶光致取向膜;由梯形聚硅氧烷合成的管状聚硅氧烷在高室温储存期微电子环氧塑封料方面的应用;以及基于梯形聚硅氧烷的拟筛板聚合物在二阶非线性光学材料方面的应用等.  相似文献   

10.
Chiral supramolecular polymers formed by host-guest interactions   总被引:1,自引:0,他引:1  
alpha-Cyclodextrin with a p-t-butoxyaminocinnamoylamino group in the 3-position (3-p-(t)()BocCiNH-alpha-CD) has been found to form a supramolecular polymer in an aqueous solution. The degree of polymerization of the supramolecular polymer is higher than 15 at 20 mM, as proved by VPO (vapor pressure osmometry) measurements and turbo ion spray TOF MS measurements. The existence of substitution/substitution interactions between adjacent monomers of the supramolecular polymer have been confirmed by the observation of positive and negative Cotton bands in circular dichroism spectra. The mechanism for the induction of the chirality was confirmed using model compounds. The substituents were found to exist as a left-handed anti configuration in supramolecular polymers. The supramolecular polymer was found to take a helical structure. The structure of the supramolecular polymer was observed by STM measurements.  相似文献   

11.
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.  相似文献   

12.
与共价键聚合物由单体(M1)通过共价键连接不同,超分子聚合物是由单体(M2)通过非共价键连接而成的长链大分子。聚合包括分子聚合和超分子聚合。超分子聚合描述M2通过非共价键自组装形成超分子聚合物的过程,涉及氢键、π-π堆砌型和立体匹配等驱动力以及分子识别、协同性等特征,与M1通过共价键形成聚合物的过程(分子聚合)不同。为了理解超分子聚合物链结构形成机理,本文分析和讨论超分子聚合的三个主要机理:(1)线性链生长;(2)螺旋链生长;(3)拓扑链生长。  相似文献   

13.
We present the construction of long‐chain water‐soluble supramolecular polymers at low monomer concentrations. Naphthalene‐based host‐enhanced π–π interactions, which possess high binding constants, were used as the driving force of supramolecular polymerization. A monomer, DNDAB, with a rigid, bulky 1,4‐diazabicyclo[2.2.2]octane‐1,4‐diium linker was designed. The design of the monomer structure strongly influenced the efficiency of the supramolecular polymerization. The rigid, bulky linker in DNDAB effectively eliminates cyclization, promoting the formation of long‐chain supramolecular polymers at low monomer concentrations. In contrast, a reference monomer containing a flexible linker (DNPDN) only forms oligomers owing to cyclization.  相似文献   

14.
Herein, we propose a new method for promoting covalent polymerization by supramolecular catalysts. To this end, we employed cucurbit[8]uril (CB[8]) as a supramolecular catalyst, and successfully prepared polyelectrolytes in an aqueous solution by taking advantage of the CB[8]‐enhanced photodimerization of Brooker merocyanine moieties. Interestingly, 10 mol % CB[8] is enough to effectively catalyze this polymerization, because CB[8] can be spontaneously replaced by terminal groups from photodimerized products. In addition, the molecular weights of the obtained polyelectrolytes can be varied by the irradiation time or the monomer. By combining supramolecular catalysis and polymer chemistry, this line of research may enrich the methodology of polymerization and open up new horizons for supramolecular polymer chemistry.  相似文献   

15.
Recent developments in kinetically controlled supramolecular polymerization permit control of the size (i.e., length and area) of self-assembled nanostructures. However, control of molecular self-assembly at a level comparable with organic synthetic chemistry and the achievement of structural complexity at a hierarchy larger than the molecular level remain challenging. This study focuses on controlling the aspect ratio of supramolecular nanosheets. A systematic understanding of the relationship between the monomer structure and the self-assembly energy landscape has derived a new monomer capable of forming supramolecular nanosheets. With this monomer in hand, the aspect ratio of a supramolecular nanosheet is demonstrated that it can be controlled by modulating intermolecular interactions in two dimensions.  相似文献   

16.
C3-Symmetric triarylamine trisamides (TATAs), decorated with three norbornene end groups, undergo supramolecular polymerization and further gelation by π–π stacking and hydrogen bonding of their TATA cores. By using subsequent ring-opening metathesis polymerization, these physical gels are permanently crosslinked into chemical gels. Detailed comparisons of the supramolecular stacks in solution, in the physical gel, and in the chemical gel states, are performed by optical spectroscopies, electronic spectroscopies, atomic force microscopy, electronic paramagnetic resonance spectroscopy, X-ray scattering, electronic transport measurements, and rheology. The results presented here clearly evidence that the core structure of the functional supramolecular polymers can be precisely retained during the covalent capture whereas the mechanical properties of the gels are concomitantly improved, with an increase of their storage modulus by two orders of magnitude.  相似文献   

17.
The correlation between molecular structure and mechanism of supramolecular polymerizations is a topic of great interest, with a special focus on the pathway complexity of porphyrin assemblies. Their cooperative polymerization typically yields highly ordered, long 1D polymers and is driven by a combination of π-stacking due to solvophobic effects and hydrogen bonding interactions. Subtle changes in molecular structure, however, have significant influence on the cooperativity factor and yield different aggregate types (J- versus H-aggregates) of different lengths. In this study, the influence of amide connectivity on the self-assembly behavior of porphyrin-based supramolecular monomers was investigated. While in nonpolar solvents, C=O centered monomers readily assemble into helical supramolecular polymers via a cooperative mechanism, their NH centered counterparts form short, non-helical J-type aggregates via an isodesmic pathway. A combination of spectroscopy and density functional theory modelling sheds light on the molecular origins causing this stunning difference in assembly properties and demonstrates the importance of molecular connectivity in the design of supramolecular systems. Finally, their mutual interference in copolymerization experiments is presented.  相似文献   

18.
Finely controlled circularly polarized luminescence (CPL) supramolecular polymerization based on a tetraphenylethene core with four l ‐ or d ‐alanine branch side chains (l ‐ 1 and d ‐ 1 ) in the solution state is presented, resulting from the tuning of mechanical stimulus. Weak, green emissions of l ‐ 1 and d ‐ 1 in tetrahydrofuran (THF) were converted into strong blue emissions by tuning the mechanical stimulus. The strong blue emissions were caused by an aggregation‐induced emission (AIE) effect during the formation of a supramolecular polymer. Lag time in the supramolecular polymerization was drastically reduced by the mechanical stimulus, which was indicative of the acceleration of the supramolecular polymerization. A significant enhancement of circular dichroism (CD) and CPL signals of l ‐ 1 and d ‐ 1 was observed by tuning the rotational speed of the mechanical stimulus, implying that the chiral supramolecular polymerization was accelerated by the mechanical stimulus.  相似文献   

19.
We report a new synthesis method of fibrous carbon material with pores sizes that are precisely controlled at the Ångstrom level, by carbonization of two dimensional (2D) porous sheets of pillar[6]arenes. The 2D porous sheets were prepared by 2D supramolecular polymerization induced by oxidation of hydroquinone units of pillar[6]arenes. Owing to the hexagonal structure of pillar[6]arene, the assembly induced by 2D supramolecular polymerization gave hexagonal 2D porous sheets, and the highly ordered structure of the 2D porous sheets formed regular fibrous structures. Then, carbonization of the 2D porous sheets afforded fibrous carbon materials with micropores. The micropore size of the fibrous porous carbon prepared from pillar[6]arene was the same size as that of the starting material pillar[6]arene assembly.  相似文献   

20.
A perylene bisimide anchored with melamine hydrogen-bonding units has been prepared, and its supramolecular polymerization upon binding with N-dodecylcyanurate (CA) was examined. The resulting flexible supramolecular polymers self-organized via a pi-pi stacking interaction between perylene chromophores, affording ribbonlike aggregates in cyclic alkanes and ropelike aggregates in acyclic alkanes to form gels. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号