首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.  相似文献   

2.
Solving Nonlinear Wave Equations by Elliptic Equation   总被引:5,自引:0,他引:5  
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.  相似文献   

3.
Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on. It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.  相似文献   

4.
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.  相似文献   

5.
The new rational form solutions to the elliptic equation are shown, and then these solutions to the elliptic equation are taken as a transformation and applied to solve nonlinear coupled wave equations. It is shown that more novel kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form,and so on.  相似文献   

6.
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

7.
Elliptic Equation and New Solutions to Nonlinear Wave Equations   总被引:2,自引:0,他引:2  
The new solutions to elliptic equation are shown, and then the elliptic: equation is taken as a transformation and is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

8.
In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

9.
Based on the Lame function and Jacobi elliptic function, the perturbation method is applied to some nonlinear coupled systems, and there many multi-order solutions are derived to these nonlinear coupled systems.  相似文献   

10.
非线性波方程求解的新方法   总被引:30,自引:0,他引:30       下载免费PDF全文
从Legendre椭圆积分和Jacobi椭圆函数的定义出发,得到了新的变换,并把它用于非线性演化方程的求解.用三个具体的例子,如非线性Klein-Gordon方程、Boussinesq方程和耦合的mKdV方程组,说明了具体的求解步骤.比较方便地得到非线性演化方程或方程组的新解析解,如周期解、孤子解等. 关键词: Jacobi椭圆函数 非线性方程 周期解 孤子解  相似文献   

11.
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2 1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.  相似文献   

12.
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2 1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.  相似文献   

13.
With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jacobi elliptic function of nonlinear partial differential equations (NPDEs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.  相似文献   

14.
The envelope periodic solutions to some nonlinear coupled equations are obtained by means of the Jacobielliptic function expansion method. And these envelope periodic solutions obtained by this method can degenerate tothe envelope shock wave solutions and/or the envelope solitary wave solutions.  相似文献   

15.
组合KdV-mKdV方程的Jacobi椭圆函数解   总被引:4,自引:0,他引:4       下载免费PDF全文
潘军廷  龚伦训 《物理学报》2007,56(10):5585-5590
对第一类椭圆方程进行新形式的函数展开,构造出非线性波动方程新的Jacobi椭圆函数解.将该方法应用于组合KdV-mKdV方程,得到方程新的Jacobi椭圆函数解,并列出一些具体的解和作出相应的图形.  相似文献   

16.
李保安  王明亮 《中国物理》2005,14(9):1698-1706
An extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics is presented, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by Jacobi elliptic functions for the coupled KdV equations are derived. In the limit cases, the solitary wave solutions and the other type of travelling wave solutions for the system are also obtained.  相似文献   

17.
In this paper,the separation transformation approach is extended to the(N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3 He superfluid.This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation.Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method.Finally,many new exact solutions of the(N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation.For the case of N 2,there is an arbitrary function in the exact solutions,which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.  相似文献   

18.
陈怀堂  张鸿庆 《中国物理》2003,12(11):1202-1207
A new generalized Jacobi elliptic function method is used to construct the exact travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation which has more new solutions. More new doubly periodic and multiple soliton solutions are obtained for the generalized (3+1)-dimensional Kronig-Penny (KP) equation with variable coefficients. This method can be applied to other equations with variable coefficients.  相似文献   

19.
In this paper, the separation transformation approach is extended to the (N+1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3He superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N+1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N>2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.  相似文献   

20.
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2 1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号