首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The algebra Bp(\Bbb R){\cal B}_p({\Bbb R}), p ? (1,¥)\{2}p\in (1,\infty )\setminus \{2\}, consisting of all measurable sets in \Bbb R{\Bbb R} whose characteristic function is a Fourier p-multiplier, forms an algebra of sets containing many interesting and non-trivial elements (e.g. all intervals and their finite unions, certain periodic sets, arbitrary countable unions of dyadic intervals, etc.). However, Bp(\Bbb R){\cal B}_p({\Bbb R}) fails to be a s\sigma -algebra. It has been shown by V. Lebedev and A. Olevskii [4] that if E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}), then E must coincide a.e. with an open set, a remarkable topological constraint on E. In this note we show if $2 < p < \infty $2 < p < \infty , then there exists E ? Bp(\Bbb R)E\in {\cal B}_p({\Bbb R}) which is not in Bq(\Bbb R){\cal B}_q({\Bbb R}) for any q > pq>p.  相似文献   

2.
In this article we study surfaces in \Bbb S2×\Bbb R {\Bbb S}^2\times {\Bbb R} for which the unit normal makes a constant angle with the \Bbb R {\Bbb R} -direction. We give a complete classification for surfaces satisfying this simple geometric condition.  相似文献   

3.
Given a compact Kähler manifold M of real dimension 2n, let P be either a compact complex hypersurface of M or a compact totally real submanifold of dimension n. Let q\cal q (resp. \Bbb R Pn{\Bbb R} P^n) be the complex hyperquadric (resp. the totally geodesic real projective space) in the complex projective space \Bbb C Pn{\Bbb C} P^n of constant holomorphic sectional curvature 4l \lambda . We prove that if the Ricci and some (n-1)-Ricci curvatures of M (and, when P is complex, the mean absolute curvature of P) are bounded from below by some special constants and volume (P) / volume (M) £\leq volume (q\cal q)/ volume (\Bbb C Pn)({\Bbb C} P^n) (resp. £\leq volume (\Bbb R Pn)({\Bbb R} P^n) / volume (\Bbb C Pn)({\Bbb C} P^n)), then there is a holomorphic isometry between M and \Bbb C Pn{\Bbb C} P^n taking P isometrically onto q\cal q (resp. \Bbb R Pn{\Bbb R} P^n). We also classify the Kähler manifolds with boundary which are tubes of radius r around totally real and totally geodesic submanifolds of half dimension, have the holomorphic sectional and some (n-1)-Ricci curvatures bounded from below by those of the tube \Bbb R Pnr{\Bbb R} P^n_r of radius r around \Bbb R Pn{\Bbb R} P^n in \Bbb C Pn{\Bbb C} P^n and have the first Dirichlet eigenvalue not lower than that of \Bbb R Pnr{\Bbb R} P^n_r.  相似文献   

4.
In this note we give a simple method to transfer the effect of the surface to the radial function in the kernel of singular integral along surface. Using this idea, we give some continuity of the singular integrals along surface with Hardy space function kernels on some function spaces, such as Lp(\mathbb Rn),Lp(\mathbb Rn,w){L^p({\mathbb R}^n),L^p({\mathbb R}^n,\omega)}, Triebel–Lizorkin spaces [(F)\dot]ps,q(\mathbb Rn){{\dot F}_{p}^{s,q}({\mathbb R}^n)}, Besov spaces [(B)\dot]ps,q(\mathbb Rn){{\dot B}_{p}^{s,q}({\mathbb R}^n)}, generalized Morrey spaces Lp,f(\mathbb Rn){L^{p,\phi}({\mathbb R}^n)} and Herz spaces [(K)\dot]pa, q(\mathbb Rn){\dot K_p^{\alpha, q}({\mathbb R}^n)}. Our results improve and extend substantially some known results on the singular integral operators along surface.  相似文献   

5.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

6.
Given a finite subset A{\cal A} of an additive group \Bbb G{\Bbb G} such as \Bbb Zn{\Bbb Z}^n or \Bbb Rn{\Bbb R}^n , we are interested in efficient covering of \Bbb G{\Bbb G} by translates of A{\cal A} , and efficient packing of translates of A{\cal A} in \Bbb G{\Bbb G} . A set S ì \Bbb G{\cal S} \subset {\Bbb G} provides a covering if the translates A + s{\cal A} + s with s ? Ss \in {\cal S} cover \Bbb G{\Bbb G} (i.e., their union is \Bbb G{\Bbb G} ), and the covering will be efficient if S{\cal S} has small density in \Bbb G{\Bbb G} . On the other hand, a set S ì \Bbb G{\cal S} \subset {\Bbb G} will provide a packing if the translated sets A + s{\cal A} + s with s ? Ss \in {\cal S} are mutually disjoint, and the packing is efficient if S{\cal S} has large density. In the present part (I) we will derive some facts on these concepts when \Bbb G = \Bbb Zn{\Bbb G} = {\Bbb Z}^n , and give estimates for the minimal covering densities and maximal packing densities of finite sets A ì \Bbb Zn{\cal A} \subset {\Bbb Z}^n . In part (II) we will again deal with \Bbb G = \Bbb Zn{\Bbb G} = {\Bbb Z}^n , and study the behaviour of such densities under linear transformations. In part (III) we will turn to \Bbb G = \Bbb Rn{\Bbb G} = {\Bbb R}^n .  相似文献   

7.
In this paper we introduce and study the anisotropic local Hardy spaces hAp(\mathbbRn)h_{A}^{p}(\mathbb{R}^{n}) 0<p≤1, associated with the expansive matrix A. We obtain an atomic characterization of the distributions in hAp(\mathbbRn)h_{A}^{p}(\mathbb{R}^{n}). Also we describe the dual spaces of our local Hardy anisotropic spaces as anisotropic Campanato type spaces.  相似文献   

8.
To any field \Bbb K \Bbb K of characteristic zero, we associate a set (\mathbbK) (\mathbb{K}) and a group G0(\Bbb K) {\cal G}_0(\Bbb K) . Elements of (\mathbbK) (\mathbb{K}) are equivalence classes of families of Lie polynomials subject to associativity relations. Elements of G0(\Bbb K) {\cal G}_0(\Bbb K) are universal automorphisms of the adjoint representations of Lie bialgebras over \Bbb K \Bbb K . We construct a bijection between (\mathbbKG0(\Bbb K) (\mathbb{K})\times{\cal G}_0(\Bbb K) and the set of quantization functors of Lie bialgebras over \Bbb K \Bbb K . This construction involves the following steps.? 1) To each element v \varpi of (\mathbbK) (\mathbb{K}) , we associate a functor \frak a?\operatornameShv(\frak a) \frak a\mapsto\operatorname{Sh}^\varpi(\frak a) from the category of Lie algebras to that of Hopf algebras; \operatornameShv(\frak a) \operatorname{Sh}^\varpi(\frak a) contains U\frak a U\frak a .? 2) When \frak a \frak a and \frak b \frak b are Lie algebras, and r\frak a\frak b ? \frak a?\frak b r_{\frak a\frak b} \in\frak a\otimes\frak b , we construct an element ?v (r\frak a\frak b) {\cal R}^{\varpi} (r_{\frak a\frak b}) of \operatornameShv(\frak a)?\operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak a)\otimes\operatorname{Sh}^\varpi(\frak b) satisfying quasitriangularity identities; in particular, ?v(r\frak a\frak b) {\cal R}^\varpi(r_{\frak a\frak b}) defines a Hopf algebra morphism from \operatornameShv(\frak a)* \operatorname{Sh}^\varpi(\frak a)^* to \operatornameShv(\frak b) \operatorname{Sh}^\varpi(\frak b) .? 3) When \frak a = \frak b \frak a = \frak b and r\frak a ? \frak a?\frak a r_\frak a\in\frak a\otimes\frak a is a solution of CYBE, we construct a series rv(r\frak a) \rho^\varpi(r_\frak a) such that ?v(rv(r\frak a)) {\cal R}^\varpi(\rho^\varpi(r_\frak a)) is a solution of QYBE. The expression of rv(r\frak a) \rho^\varpi(r_\frak a) in terms of r\frak a r_\frak a involves Lie polynomials, and we show that this expression is unique at a universal level. This step relies on vanishing statements for cohomologies arising from universal algebras for the solutions of CYBE.? 4) We define the quantization of a Lie bialgebra \frak g \frak g as the image of the morphism defined by ?v(rv(r)) {\cal R}^\varpi(\rho^\varpi(r)) , where r ? \mathfrakg ?\mathfrakg* r \in \mathfrak{g} \otimes \mathfrak{g}^* .<\P>  相似文献   

9.
We prove that on the Sobolev spaces HN0 H^N_0 (N S 0) of 1-periodic functions in HNloc (\Bbb R) H^N_{loc} ({\Bbb R}) with average 0, the Korteweg-deVries equation (KdV) admits global Birkhoff coordinates.  相似文献   

10.
In signal processing and system identification for H2(\BbbT)H^{2}(\Bbb{T}) and H2(\BbbD)H^{2}(\Bbb{D}) the traditional trigonometric bases and trigonometric Fourier transform are replaced by the more efficient rational orthogonal bases like the discrete Laguerre, Kautz and Malmquist-Takenaka systems and the associated transforms. These bases are constructed from rational Blaschke functions, which form a group with respect to function composition that is isomorphic to the Blaschke group, respectively to the hyperbolic matrix group. Consequently, the background theory uses tools from non-commutative harmonic analysis over groups and the generalization of Fourier transform uses concepts from the theory of the voice transform. The successful application of rational orthogonal bases needs a priori knowledge of the poles of the transfer function that may cause a drawback of the method. In this paper we give a set of poles and using them we will generate a multiresolution in H2(\BbbT)H^{2}(\Bbb{T}) and H2(\BbbD)H^{2}(\Bbb{D}). The construction is an analogy with the discrete affine wavelets, and in fact is the discretization of the continuous voice transform generated by a representation of the Blaschke group over the space H2(\BbbT)H^{2}(\Bbb{T}). The constructed discretization scheme gives opportunity of practical realization of hyperbolic wavelet representation of signals belonging to H2(\BbbT)H^{2}(\Bbb{T}) and H2(\BbbD)H^{2}(\Bbb{D}) if we can measure their values on a given set of points inside the unit circle or on the unit circle. Convergence properties of the hyperbolic wavelet representation will be studied.  相似文献   

11.
12.
We first define molecules for Hardy spaces H1F(\mathbbRn)H^{1}_{\mathcal{F}}(\mathbb{R}^{n}) associated with a family F\mathcal{F} of sections which is closely related to the Monge-Ampère equation and prove their molecular characters. As an application, we show that Monge-Ampère singular operators are bounded on H1F(\mathbbRn)H^{1}_{\mathcal{F}}(\mathbb{R}^{n}).  相似文献   

13.
In [C.K. Chui and X.L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal., 24 (1993), 263–277], the authors proved that if {eimbxg(x-na): m,n ? \Bbb Z}\{e^{imbx}g(x-na): m,n\in{\Bbb Z}\} is a Gabor frame for L2(\Bbb R)L^2({\Bbb R}) with frame bounds A and B, then the following two inequalities hold: A £ \frac2pb?n ? \Bbb Z|g(x-na)|2B,     a.e.A\le \frac{2\pi}{b}\sum_{n\in{\Bbb Z}}\vert g(x-na)\vert^2\le B, \quad a.e. and A £ \frac1a?m ? \Bbb Z|[^(g)](w-mb)|2B,     a.e.A\le \frac{1}{a}\sum_{m\in{\Bbb Z}}\vert \hat{g}(\omega-mb)\vert^2\le B, \quad a.e. . In this paper, we show that similar inequalities hold for multi-generated irregular Gabor frames of the form è1 £ kr{eiáx, l?gk(x-m): m ? Dk, l ? Lk }\bigcup_{1\le k\le r}\{e^{i\langle x, \lambda\rangle}g_{k}(x-\mu):\, \mu\in \Delta_k, \lambda\in\Lambda_k \} , where Δ k and Λ k are arbitrary sequences of points in \Bbb Rd{\Bbb R}^d and gk ? L2(\Bbb Rd)g_k\in{L^2{(\Bbb R}^d)} , 1 ≤ kr.  相似文献   

14.
We study necessary and sufficient conditions for embeddings of Besov and Triebel-Lizorkin spaces of generalized smoothness B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), respectively, into generalized H?lder spaces L¥,rm(·)( \mathbb Rn)\Lambda_{\infty,r}^{\mu(\cdot)}(\ensuremath {\ensuremath {\mathbb {R}}^{n}}). In particular, we are able to characterize optimal embeddings for this class of spaces provided q>1. These results improve the embedding assertions given by the continuity envelopes of B(n/p,Y)p,q(\mathbbRn)B^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}) and F(n/p,Y)p,q(\mathbbRn)F^{(n/p,\Psi)}_{p,q}(\mathbb{R}^{n}), which were obtained recently solving an open problem of D.D. Haroske in the classical setting.  相似文献   

15.
In this paper we consider the Gross-Pitaevskii equation iu t = Δu + u(1 − |u|2), where u is a complex-valued function defined on \Bbb RN×\Bbb R{\Bbb R}^N\times{\Bbb R} , N ≥ 2, and in particular the travelling waves, i.e., the solutions of the form u(x, t) = ν(x 1ct, x 2, …, x N ), where c ? \Bbb Rc\in{\Bbb R} is the speed. We prove for c fixed the existence of a lower bound on the energy of any non-constant travelling wave. This bound provides a non-existence result for non-constant travelling waves of fixed speed having small energy.  相似文献   

16.
We consider improvements of Dirichlet’s Theorem on the space of matrices Mm,n(\mathbb R){M_{m,n}(\mathbb R)}. It is shown that for a certain class of fractals K ì [0,1]mn ì Mm,n(\mathbb R){K\subset [0,1]^{mn}\subset M_{m,n}(\mathbb R)} of local maximal dimension Dirichlet’s Theorem cannot be improved almost everywhere. This is shown using entropy and dynamics on homogeneous spaces of Lie groups.  相似文献   

17.
Cauchy’s problem for a generalization of the KdV–Burgers equation is considered in Sobolev spaces H1(\mathbbR){H^1(\mathbb{R})} and H2(\mathbbR){H^2(\mathbb{R})}. We study its local and global solvability and the asymptotic behavior of solutions (in terms of the global attractors). The parabolic regularization technique is used in this paper which allows us to extend the strong regularity properties and estimates of solutions of the fourth order parabolic approximations onto their third order limit—the generalized Korteweg–de Vries–Burgers (KdVB) equation. For initial data in H2(\mathbbR){H^2(\mathbb{R})} we study the notion of viscosity solutions to KdVB, while for the larger H1(\mathbbR){H^1(\mathbb{R})} phase space we introduce weak solutions to that problem. Finally, thanks to our general assumptions on the nonlinear term f guaranteeing that the global attractor is usually nontrivial (i.e., not reduced to a single stationary solution), we study an upper semicontinuity property of the family of global attractors corresponding to parabolic regularizations when the regularization parameter e{\epsilon} tends to 0+ (which corresponds the passage to the KdVB equation).  相似文献   

18.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

19.
Assume that {Sn}1 \{S_n\}_1^\infty is a sequence of automorphisms of the open unit disk \Bbb D{\Bbb D} and that {Tn}1\{T_n\}_1^\infty is a sequence of linear differential operators with constant coefficients, both of them satisfying suitable conditions. We prove that for certain spaces X of holomorphic functions in the open unit disk, the set of functions f ? Xf \in X such that {(Tn f) °Sn:  n ? \Bbb N}\{(T_n\,f) \circ S_n: \, n \in {\Bbb N}\} is dense in H(\Bbb D)H({\Bbb D}) is residual in X. This extends the Seidel-Walsh theorem together with some subsequent results.  相似文献   

20.
In this paper we develop a new weak convergence and compact embedding method to study the existence and uniqueness of the Lr2p(\mathbbRd;\mathbbR1Lr2(\mathbbRd;\mathbbRd)L_{\rho}^{2p}({\mathbb{R}^{d}};{\mathbb{R}^{1}})\times L_{\rho}^{2}({\mathbb{R}^{d}};{\mathbb{R}^{d}}) valued solution of backward stochastic differential equations with p-growth coefficients. Then we establish the probabilistic representation of the weak solution of PDEs with p-growth coefficients via corresponding BSDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号